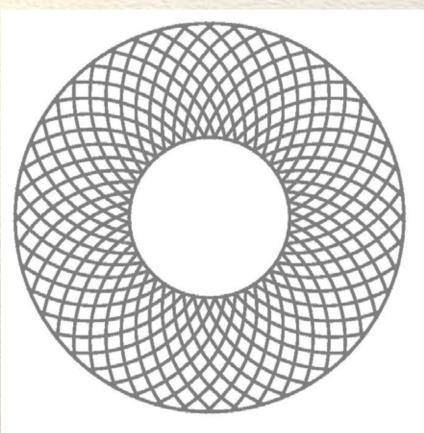


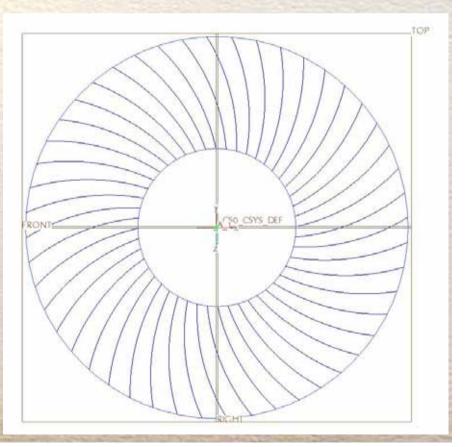
The Backward Endcap EMC Prototype

- The backward endcap calorimeter prototype consists of 24-layers of Pb plates and scintillator strips (full length of 12 X₀)
- It is built in a quadrant structure
 → 2.8 mm thick Pb plates have ring segments with r_i=31 cm & r_a=75 cm
 → 3 mm thick scintillator plates are segmented into left-handed spiral strips, right-handed spiral strips and radial strips (alternating)
- We will cut individual strips with a diamond tool (polished edge) and instrument 6 strips per layer
- Each scintillator strip has a WLS Y11 fiber positioned in its center coupled to an MPPC → use for timing: reduce backgrounds, PID? (τ_{sc}=2.2 ns, τ_{fiber}=2.3 ns, τ_{MPPC}~0.1 ns)
- Each strips is equipped with a thermocouple to record temperature
 a clear fiber coupled to an LED provides calibration and monitoring



Discussion of Spiral Shapes

The left-handed logarithmic spirals are defined by


x(t) = r Exp[b * t] Cos[t] - ry(t) = r Exp[b * t] Sin[t]

- For r=37.5 cm, b=0.2 yield 8 complete tiles and 2 fractions of a tile
- By modifying r and b get complete half tiles in outer ring
- Tile sizes are larger than 1 Molière radius → for smaller size need to increase # strips/layer (60, 90)
 → too many readout channel?

Status of Prototype Preparations

- We have the scintillator sheets (75 cm x 75 cm x 0.3 cm) in Bergen 25 BC 404 sheets from St Gobain
- The machine shop in Bergen has a computer-controlled milling machine, they started with the training to operate it
- The first spiral strip will be cut with the old machine, since I want one strip for testing asap
- Dominik Fehlker, our electronics engineer has programmed 48 left-handed spirals and 48 right-handed spirals in Pro Engineer
- Dominik is working on the drawing of one spiral in Pro Engineer
 This can be read into the old milling machine

Status of Prototype Preparations

- So I hope to get the first spiral in a week or two
- The 24 hardened Pb plates from JL Goslar machined to the correct segment shapes are at CERN
- We are working on a tax-free transfer to Bergen
 takes about 2 weeks
- We have 160 MPPCs in Bergen, 16 more than we need for the prototype
- We have our own PC with Labview which needs to be interfaced to the SPIROC chip and the CALICE CMB
- Gigi Cibinetto promised to send me 80 m of Kuraray Y11 fiber, once they finished cutting fibers for their prototype, but I have not heard back from him after the summer

Missing Components for Stacking

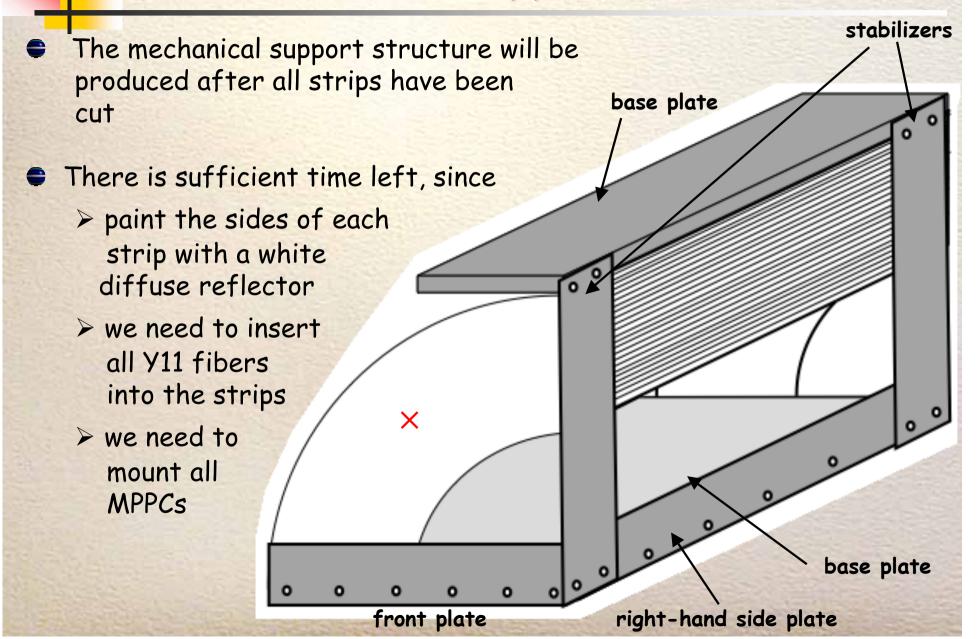
- 48 cut left-handed spiral strips, 48 cut right-handed spiral strips, and
 48 cut radial strips, each with a groove in the center.
- Diffuse reflector sheets that cover the top and bottom faces of the scintillator strips
 master student wanted to perform tests (he disappeared since June)
- Diffuse white reflector paint to cover sides of the scintillator strips
 reach conclusion after tests
- Aluminized mylar sheet to cut out 144 mirrors with Ø=1 mm
- 144 temperature sensors positioned near each MPPC
- Clear fibers and CALICE CMB that I will borrow from Prague
 I need to confirm that both are available in 2011 for a testbeam operation at Frascati

Manpower Issues

Good news: due to the approval of AIDA I will be able to hire a postdoc for 2-3 years who will work on SuperB more than half the time

Bad news: EU funding is only available after April 2011, it pays at most 7 months, rest will come from NFR, which is available in 2012 → probably, I cannot hire the postdoc before June 2011

→ The master student working on R&D disappeared in June


I have been advertising at the institute without success so far (there may be a candidate)

Our machine shop is undermanned due to a retirement, vacant position not been filled yet and training on the computer-controlled milling machine is not finished

cutting spiral strips is a big job and make several weeks after they start (not obvious yet)

After the Elba meeting it became obvious that the October testbeam was out of reach

Mechanical Support Structure

Summary

- We have all major components in hand
- We have the financial resources to purchase the few missing items
- Presently, the machining of the strips is the bottleneck due to understaffing and lacking expertise in the machine shop
- The manpower situation is momentarily bad but will improve considerably in 2011

Next Steps

- I am pushing hard to have one spiral strip produced rather soon
 Measure light yield and study its uniformity
- Redo cross talk measurements for full-size sector strip
- Perform light output study with different diffuse reflectors
- Order missing components and borrow calibration system
- Measure properties of 2 strip segments connected via one Y11 fiber
- Push machine shop to start scintillator strip production (144 strips)
- Perform detailed shower simulations
- Understand the functions of SPIROC chip, integrate it into the readout and calibration chains