

© SUPERB COMPARED TO DEDICATED FACILITIES

First Results

SuperB Meeting Frascati

Walter Wittmer

2010-09-29

COMMENTS

- First cut to compare bend magnet and undulator synchrotron radiation from SuperB HER and LER to other dedicated sources: NSLS II, PEP X, ESRF, ...
- The calculation is done analytically using the formalism described in the standard literature (Wiedemann, ...)
- Source point data for SuperB for bend calculation extrapolated and same as NSLS-II for undulator calculation.

SPECTRAL CENTRAL INTENSITY BEND MAGNET CALCULATION

 $\frac{d^2 F}{d\theta \cdot d\psi}\Big|_{\psi=0} = 1.327 \times 10^{13} E^2 [GeV] I[A] H_2(y)$

SPECTRAL FLUX BEND MAGNET CALCULATION

10⁰

$$\frac{dF_{bm}(y)}{d\theta} = \frac{\sqrt{3}}{2\pi} \alpha \gamma \frac{\Delta \omega}{\omega} \frac{I}{e} G_1(y)^{\sigma^* 10^2}$$

$$G_1(y) = y \int_{y}^{\infty} K_{\frac{5}{3}}(y') dy'$$

$$\int_{y}^{10^4} \frac{1}{y} K_{\frac{5}{3}}(y') dy'$$

$$\frac{dF_{bm}(y)}{d\theta} = 2.457 \times 10^{13} E[GeV] I[A] G_1(y)$$

SPECTRAL BRIGHTNESS BEND MAGNET CALCULATION

$$B_{bm} = \frac{\frac{d^2 F(y)}{d\theta \cdot d\psi}\Big|_{\psi=0}}{2\pi \Sigma_x(y) \Sigma_y(y)}$$

$$\Sigma_{x}(y) = \left[\varepsilon_{x}\beta_{x} + \eta_{x}^{2}\delta_{E}^{2} + \sigma_{r}^{2}(y)\right]^{\frac{1}{2}}$$

$$\sigma_r(y) = \frac{\lambda}{4\pi\sigma_{\psi}(y)}$$

 $\sigma_{\psi}^{2}(y) = \frac{1}{\sqrt{2\pi}} \frac{\frac{dF_{bm}(y)}{d\theta}}{\frac{d^{2}F_{bm}(y)}{d^{2}F_{bm}(y)}}$

 $d\theta \ d\psi$

$$\Sigma_{y}(y) = \left[\varepsilon_{y}\beta_{y} + \sigma_{r}^{2}(y) + \frac{\varepsilon_{y}^{2} + \varepsilon_{y}\gamma_{y}\sigma_{r}^{2}(y)}{\sigma_{\psi}^{2}(y)}\right]^{\frac{1}{2}}$$

PARAMETER TABLE BEND MAGNET

Parameters *	SuperB HER	SuperB LER	NSLS II	APS	ESRF	ELETTRA	ALS
E [GeV]	6.7	4.18	3	7.0	6.03	2.0	1.9
I [mA]	1892	2447	500	100	200	320	500
ρ [m]	69.64	26.8	24.975	38.961	23.623	5.55	4.81
B [T]	0.32	0.52	0.4	0.599	0.85	1.2	-
ɛx [m rad]	2.0 E-9	2.46 E-9	0.55 E-9	2.514 E-9	4.0 E-9	7.0 E-9	6.3 E-9
βx [m]	2.5	2.5	-	1.7	0.99	-	0.87
σE [1]	6.43 E-4	7.34 E-4	10.0 E-4	9.6 E-4	11.0 E-4	8.0 E-4	9.7 E-4
ηx [m]	0.065	0.066	0.0	0.05	0.045	-	0.072
εy [m rad]	5.0 E-12	6.15 E-12	8.0 E-12	22.6 E-12	25.0 E-12	70.0 E-12	50 E-12
βy [m]	15.0	13.5	-	24.1	34.9	-	1.36
ay [1]	-2.0	-2.5	-	0.614		-	-0.069
γy [m^-1]	0.334	0.537	0.05	0.101	0.10	0.5	0.740
σx [mm]	82.1 E-3	92.1 E-3	125.0 E-3	81.7 E-3	77.0 E-3	139.0 E-3	101.8 E-3
σy [mm]	8.66 E-3	9.11 E-3	13.4 E-3	27.0 E-3	29.5 E-3	28.0 E-3	8.2 E-3

* Source of data different web pages and presentations

SPECTRAL CENTRAL INTENSITY BEND MAGNET

SPECTRAL FLUX BEND MAGNET

Flux Bend Magnet 10¹⁵ **NSLSII** SuperB LER SuperB HER APS ALS ESRF **ELETTRA** Flux [photons/sec/0.1%BW/mrad] 10¹⁴ 10¹³ 10¹² 10⁰ 10² 10³ 10⁵ 10⁴ 10⁶ 10¹ photon energy [eV]

SPECTRAL BRIGHTNESS BEND MAGNET

SPECTRAL FLUX UNDULATOR CALCULATION

$$F_u(K,\omega) = \pi \alpha N \frac{\Delta \omega}{\omega} \frac{I}{e} Q_n(K) , \quad n = 1,3,5,\dots$$

$$Q_n(K) = \left(1 + \frac{K^2}{2}\right) \frac{F_n(K)}{n} , \quad n = 1, 3, 5, \dots$$

$$F_n(K) = \frac{K^2 n^2}{\left(1 + K^2 / 2\right)^2} \left[J_{\frac{n-1}{2}}\left(\frac{nK^2}{4\left(1 + \frac{K^2}{2}\right)}\right) - J_{\frac{n+1}{2}}\left(\frac{nK^2}{4\left(1 + \frac{K^2}{2}\right)}\right)\right]^2$$

$$F_u(K,\omega) = 1.431 \times 10^{14} NQ_n(K) I[A], \quad n = 1,3,5,\dots$$

n	harmonic number
N	number of periods
λ_{u}	period length
K	strength parameter
λ	undulator radiation wave length

$$\lambda = \frac{\lambda_u}{2\gamma^2 n} \left(1 + \frac{K^2}{2} \right), \quad n = 1, 3, 5, \dots$$

$$K = \frac{eB_0\lambda_u}{2\pi mc} = 0.934\lambda_u [cm] B_0$$

$$\varepsilon = \frac{ch}{\lambda}$$
 10

SPECTRAL CENTRAL INTENSITY UNDULATOR CALCULATION

$$\frac{d^2 F_u}{d\theta \cdot d\psi}\bigg|_{\psi=\theta=0} = \frac{F_u}{2\pi \Sigma'_x \Sigma'_y}$$

SPECTRAL BRIGHTNESS UNDULATOR CALCULATION

 $B_{u} = \frac{F_{u}}{\left(2\pi\right)^{2} \sum_{x} \sum_{y} \sum_{x} \sum_{y} \sum_{y}$

$$\Sigma_x = \sqrt{\sigma_x^2 + \sigma_r^2}$$
$$\Sigma_y = \sqrt{\sigma_y^2 + \sigma_r^2}$$

$$\sigma_r = \frac{1}{2\pi} \sqrt{\lambda N \lambda_u}$$

PARAMETER TABLE UNDULATOR

Parameters *	SuperB HER	SuperB LER	NSLS II	APS	PEPX W	PEPX
	IVU20	IVU20	IVU20	U33	IVU23	IVU23
E [GeV]	6.7	4.18	3	7.0	4.5	4.5
I [mA]	1892	2447	500	100	1500	1500
σE [1]	6.43 E-4	7.34 E-4	10.0 E-4	9.6 E-4	1.14 E-3	1.14 E-3
εx [m rad]	2.0 E-9	2.46 E-9	0.55 E-9	2.514 E-9	85.7 E-12	379 E-12
βx [m]	1.8	1.8	1.8	1.7	16.04	16.04
εy [m rad]	5.0 E-12	6.15 E-12	8.0 E-12	22.6 E-12	215 E-15	948 E-15
βy [m]	1.1	1.1	1.1	24.1	6.27	6.27
σx [mm]	60.0 E-3	66.5 E-3	33.3 E-3	278 E-3	37.0 E-3	78.0 E-3
σy [mm]	2.4 E-3	2.6 E-3	2.9 E-3	8.9 E-3	1.16 E-3	2.44 E-3
σx' [mrad]	33.3 E-3	37.0 E-3	16.5 E-3	11.8 E-3	2.32 E-3	4.86 E-3
σy' [mrad]	2.1 E-3	2.7 E-3	2.7 E-3	3.3 E-3	0.190 E-3	0.390 E-3
N [1]	148	148	148	72	150	150
λu [mm]	20	20	20	33	23	23
Kmax [1]	1.83	1.83	1.83	2.75	2.26	2.26
Kmin [1]	0.1	0.1	0.1	0.1	0.1	0.1

* Source of data different web pages and presentations

SPECTRAL FLUX UNDULATOR

SPECTRAL CENTRAL INTENSITY UNDULATOR

SPECTRAL BRIGHTNESS UNDULATOR

SPECTRAL BRIGHTNESS UNDULATOR

Spectral Brightness Undulator for SuperB HER

SPECTRAL FLUX UNDULATOR

Flux for Undulators from Various Rings

SPECTRAL CENTRAL INTENSITY UNDULATOR

SPECTRAL BRIGHTNESS UNDULATOR

Page 27

Annecy SuperB Workshop

Page 26

Particle Physic

BACKUP SLIDES

- Sources for information
- Benchmark test results for code used
- Basic relation used for calculating synchrotron radiation (Schwinger)

SOME SOURCES

- Hulbert and Weber: "Flux and brightness calculations for various synchrotron radiation sources."
- Wiedemann: "Synchrotron Radiation"
- Kwang-Je Kim: "Characteristics of Synchrotron Radiation"
- NSLS II web page: NSLS-II Source Properties and Floor Layout.
- Seemann: "SuperB Synchrotron Radiation Source Issues."
- Cai: "Choice of Parameters for PEP-X."
- Various Web pages: ALS, ELETTRA, APS, ESRF.

BENCHMARK TEST OF CODE USED FOR BEND MAGNET CALCULATIONS

Compare to: Hulbert and Weber: "Flux and brightness calculations for various synchrotron radiation sources."

10¹

10¹⁸

Central Intensity [photons/sec/0.1%BW/mrad²]

10

10

10

APS

ALS NSLS1X X1

NSLS1VUV

 10^{2}

 10^{3}

10⁴

photon energy [eV]

Spectral Central Intensity Bend Magnet

10⁵

BENCHMARK TEST OF CODE USED FOR UNDULATOR CALCULATIONS

Compare to: Hulbert and Weber: "Flux and brightness calculations for various synchrotron radiation sources."

ANGULAR DISTRIBUTION OF RADIATION EMITTED BY ELECTRONS MOVING THROUGH A BEND MAGNET WITH A CIRCULAR TRAJECTORY IN THE HORIZONTAL PLANE

$$\frac{d^2 F_{bm}(\omega)}{d\theta \cdot d\psi} = \frac{3\alpha}{4\pi^2} \gamma^2 \frac{\Delta\omega}{\omega} \frac{I}{e} y^2 (1+X^2)^2 \times \left[K_{\frac{2}{3}}^2(\xi) + \frac{X^2}{1+X^2} K_{\frac{1}{3}}^2(\xi) \right]$$

F_{bm}	photon flux (number of photons per second)			
θ	observation angle in the horizontal plane			
ψ	observation angle in the vertical plane			
α	fine stricture constant			
γ	electron energy			
ω	angular frequency of photons			
ω_c	critical angular frequency of photon distribution			
Е	photon energy			
\mathcal{E}_{C}	critical photon energy			
Ι	beam beam current			
е	electron charge			
С	speed of light			
В	magnetic field strength			
E	electron beam energy			
ρ	radius of instantaneous curvature of the electron bean trajectory			

$$\rho = \frac{E}{ecB}$$

$$\rho[m] = 3.33 \quad \frac{E[GeV]}{B[T]}$$
$$\omega_{C} = \frac{3\gamma^{2}c}{2\rho}$$
$$\varepsilon_{C} = \hbar\omega_{C}$$

 $\varepsilon_C[keV] = 0.665 E^2[GeV] B[T]$

$$\xi = \frac{y(1+X^2)^{\frac{3}{2}}}{2} \qquad X = \gamma \psi$$