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Hamiltonian
Hamiltonian of the system:

H =− (1+hx)

[√
1+ 2δ

β0
+δ2 − (Px −Kx )2 − (Py −Ky )2 +Ks

]
+ δ

β0
+1

with : Kx ,y ,s = qAx ,y ,s
p0

, Px ,y = px ,y
p0

, p0 the total momentum

The Taylor expansion of the Hamiltonian of an ideal
straight magnet is:

H =
P2

x +P2
y

2
+K1

x2 −y2

2
Linear terms

+K2
x3 −3xy2

6
Sextupoles

+
(
P2

x +P2
y

)2
/8 Kinematic term

+K3
x4 −6x2y2 +y4

24
Octupoles

+Chromatic terms+O(5)
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Derivatives of the tune

Action-Angle variables:
The position and momentum of the particle can be
written under the form:

x =
√

2βxJx sin(2πµx +φx)

Px =
√

2Jx

βx
(cos(2πµx +φx)−αx sin(2πµx +φx))

µx =
s∫

0

dt
βx(t)

At first order, the tune shift due to a perturbation ∆H of
the Hamiltonian is given by:

∆νx = 1
2π

∮ 〈
∂∆H
∂Jx

〉
φ

ds,∆νy = 1
2π

∮ 〈
∂∆H
∂Jy

〉
φ

ds
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Kinematic term

The perturbation of the Hamiltonian by this effect is:

∆H =
(
P2

x +P2
y

)2

8

The first-order contribution of the kinematic terms to the
tune is then:

Cxx = ∂νx

∂Jx
= 3

16π

∮
γ2

xds Cxy = ∂νx

∂Jy
= 1

8π

∮
γxγyds

Cyy = ∂νy

∂Jy
= 3

16π

∮
γ2

yds

The main contribution is where the gamma function is
the largest: at the IP.
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Thick sextupole vs thin sextupole

The strongest sextupoles are in the interaction region to
cancel the local chromaticity and the betatron function
are high too. These sextupoles are then the main
contribution to the non linearities. To kill the second
order terms the phase advance between them is π.
The kick in position due to this kind of structure is then:

x1 =−x0 −Px ,0L− (K2L)2

12
(x3

0 +x0y2
0 )L2 +O(5)

The second order is effectively killed.
BUT: Third order terms are not canceled for thick
sextupoles.
The effect is quadratic and not proportional to the
strength of the sextupole.

5 / 24



Crab sextupoles

Parameters Units HER
Length L m 35
Strength K2 m−3 16.67
Horizontal beta at the crab βx m 14.6
Vertical beta at the crab βy m 200
Horizontal beta at the IP β∗

x cm 2.6
Vertical beta at the IP β∗

y cm 0.0274
Full crossing angle θ mrad 66

The crab sextupole strength is given by 1:

K2L= 1
θ

1
β∗

yβy

√
β∗

x
βx

1"SUPPRESSION OF BEAM-BEAM RESONANCES IN CRAB WAIST
COLLISIONS", P. Raimondi et al., EPAC08, Genoa
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Crab sextupoles

Parameters Units HER
Length L m 35
Strength K2 m−3 33.34
Horizontal beta at the crab βx m 14.6
Vertical beta at the crab βy m 200
Horizontal beta at the IP β∗

x cm 2.6
Vertical beta at the IP β∗

y cm 0.0274
Full crossing angle θ mrad 66

The crab sextupole strength is given by 1:

K2L= 1
θ

1
β∗

yβy

√
β∗

x
βx

A factor 2 is missing. To take into account in the future.
1"SUPPRESSION OF BEAM-BEAM RESONANCES IN CRAB WAIST

COLLISIONS", P. Raimondi et al., EPAC08, Genoa
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Fringe field in the quadrupoles

The perturbated Hamiltonian is:

∆H =−
K ′

1
12

(xpx(x2−3y2)−ypy(y2−3x2))−
K ′′

1
48

(x4−y4)+O(5)

The derivative of the tune with the amplitude is then:

Cxx = 1
8π

∑
QP

K1(αx ,oβx ,o −αx ,iβx ,i)

Cxy = 1
8π

∑
QP

K1(αx ,oβy ,o −αx ,iβy ,i −αy ,oβx ,o +αy ,iβx ,i)

Cyy = −1
8π

∑
QP

K1(αy ,oβy ,o −αy ,iβy ,i)

The main contribution is where the beta function is the
largest with K1: at the quadrupole QD0 near the IP.
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Octupoles

The perturbation of the Hamiltonian is:

∆H =K3
x4 −6x2y2 +y4

24

After calculation, we have:

Cxx = 1
16π

∮
K3β

2
xds Cxy = −1

8π

∮
K3βxβyds

Cyy = 1
16π

∮
K3β

2
yds

Remark: The kick in x due to a thin octupole is
proportional to x3−3xy2 whereas the kick due to the
fringe field is x3+3xy2.
⇒ It is not possible to compensate the fringe field with
octupoles.
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MAD8 or MADX?

The aim was to cross check the results from the
simulations of Piminov and Levichev.
The first idea was to use the very powerful package PTC
to make the study of the dynamic aperture. The big
advantages are:

Possibility to track at a very high order.
The values of the derivatives of the tune with
amplitude and momentum can be calculated at
the order we wish.
The fringe field can be simulated in the
quadrupoles.

BUT: The fringe field in the quadrupoles is taken into
account neither by MADX alone nor by MAD8.
⇒ The source code of Mad8 was modified. The tracking
is then with Lie4 method.
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Summary of the contributions HER
Acceleraticum Cxx Cxy Cyy

IP Sextupoles cm−1 -25 -51 -8300
Crab Sextupoles cm−1 -0.6 -5.5 -114
Arc Sextupoles cm−1 270 -330 -71
Sub Total cm−1 253 -402 -6510
Octupoles cm−1 -124 142 365
QP Fringe Field cm−1 240 1510 5830
Kinematic term cm−1 0.6 35 4440
Total cm−1 375 1320 3390

Analytical formula: Cxx Cxy Cyy
Octupoles -116 124 392
QP Fringe field 253 1614 6369
Kinematic term 100 149 6969

Average agreement Acceleraticum with analytical for-
mulae (kinematic and fringe field term).
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Summary of the contributions HER
MADX-PTC Cxx Cxy Cyy

IP Sextupoles cm−1 -21 -43 -7301
Crab Sextupoles cm−1 -0.5 -4.9 -88
Arc Sextupoles cm−1 277 -360 -70
Sub Total cm−1 256 -408 -7459
Octupoles cm−1 -116 124 392
QP Fringe Field cm−1 253 1614 6369
Kinematic term cm−1 100 149 6967
Total cm−1 493 1479 6270

Analytical formula: Cxx Cxy Cyy
Octupoles -116 124 392
QP Fringe field 253 1614 6369
Kinematic term 100 149 6969

Very good agreement MADX-PTC with analytical formu-
lae.
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Summary of the contributions LER
Acceleraticum Cxx Cxy Cyy

IP Sextupoles cm−1 -25 -51 -8300
Crab Sextupoles cm−1 -0.6 -5.5 -114
Arc Sextupoles cm−1 273 -450 -93
Sub Total cm−1 247 -510 -8520
Octupoles cm−1 -120 112 384
QP Fringe Field cm−1 240 1440 5750
Kinematic term cm−1 0.6 35 5090
Total cm−1 370 1205 3380

Analytical formula: Cxx Cxy Cyy
Octupoles -119 107 405
QP Fringe field 254 1616 6372
Kinematic term 100 149 6969

Average agreement Acceleraticum with analytical for-
mulae (kinematic and fringe field term).
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Summary of the contributions LER
MADX-PTC Cxx Cxy Cyy

IP Sextupoles cm−1 -21 -43 -7301
Crab Sextupoles cm−1 -0.5 -4.9 -88
Arc Sextupoles cm−1 274 -433 -92
Sub Total cm−1 256 -481 -7482
Octupoles cm−1 -118 107 405
QP Fringe Field cm−1 254 1616 6372
Kinematic term cm−1 100 149 6967
Total cm−1 488 1390 6262

Analytical formula: Cxx Cxy Cyy
Octupoles -119 107 405
QP Fringe field 254 1616 6372
Kinematic term 100 149 6969

Very good agreement MADX-PTC with analytical formu-
lae.
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Comparison MADX-PTC/MAD8

With Fringe Field/ No crab sextupole HER
MADX-PTC 6th order MAD8 with Lie4

Good agreement between both codes.
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Comparison MADX-PTC/Acceleraticum

With Fringe Field/ No crab sextupole HER
MADX-PTC 6th order Acceleraticum

Good agreement between both codes.
13 / 24



Comparison MADX-PTC/Acceleraticum

With Fringe Field/ With crab sextupole HER
MADX-PTC 6th order Acceleraticum

Good agreement between both codes.
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Dynamic aperture

No crab sextupole HER
MADX-PTC 6th order Acceleraticum

With crab sextupole HER
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Enlargement dynamic aperture

The dynamic aperture is a bit different between
MADX-PTC and Acceleraticum.
The reason why we have this difference is a different
treatment of the kinematic term but a new patch in
Acceleraticum should reduce the difference (the
kinematic term will be taken into account in the
quadrupoles too).
A way to enlarge the dynamic aperture is to change
the strength of the octupoles (one near the IP and the
other near the crab sextupole).
The optimization was made “by hand”. A tracking was
made for different parameter sets for the octupole
strengthes. I have then chosen the parameter set which
minimizes the non linearities.
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Tracking with octupoles

No crab sextupoles HER
Reference octupoles New octupoles

Very weak octupoles (-5 m−3 and -180 m−3)
17 / 24



Tracking with octupoles

With crab sextupoles HER
Reference octupoles New octupoles

Very weak octupoles (-5 m−3 and -240 m−3)
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Dynamic aperture with octupolar correction

No crab sextupole HER
Reference octupoles New octupoles

δ= 0%
δ=+1%
δ=−1%

With crab sextupole HER
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Tracking with octupoles

No crab sextupoles LER
Reference octupoles New octupoles

Very weak octupoles (-5 m−3 and -180 m−3)
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Tracking with octupoles

With crab sextupoles LER
Reference octupoles New octupoles

Very weak octupoles (-5 m−3 and -240 m−3)
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Dynamic aperture with octupolar correction

No crab sextupole LER
Reference octupoles New octupoles

δ= 0%
δ=+1%
δ=−1%

With crab sextupole LER
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Correction with decapoles

The dynamic aperture shrinks a lot with the momentum.
Optimizing the dynamic aperture on momentum with
octupoles might shorten it off momentum.
An idea is to add decapoles in dispersive regions.
That enables to add an octupolar term proportional to
the dispersion and δ at the decapole location.
For the moment, there is no significant gain.
Further studies (location and strength of the decapoles,
. . .) are needed.
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Conclusion

Some simulations with MADX-PTC taking into
account the fringe field were performed.
A preliminary cross-checking of Piminov and
Levichev’s results was made by taking into account
the fringe field effect in the quadrupoles.
The order of magnitude for the dynamic aperture
found with MADX-PTC is quite coherent with their
results despite a few differences (kinematic term
contribution).
It is possible to enlarge significantly the on
momentum dynamic aperture by adding weak
octupoles in the structure.
More studies must be pursued to evaluate if
decapoles would be useful for the off momentum
dynamic aperture.
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