Latest on

Low Emittance Tuning

LER Without Final Focus & With Final Focus

Simone Liuzzo SuperB XIV General Meeting Low Emittance Tuning:

- Place correctors and monitors
- Define Magnet Alignment Errors in the lattice
- Define strength of correctors in order to:

minimize vertical emittance

OUTPUT:

Table of tolerated misalignment values.

Steering: Orbit and Dispersion Free Steering + Coupling and Beta-Beating Free Steering

Response matrices **(RM)** for the following quantities are used for the correction. R is the vector of BPM readings.

$$\vec{R} = RM \vec{K}$$

Dispersion measured by :

Coupling measured by :

Beta beating measured by :

$$\begin{split} \vec{\eta} &= \frac{\vec{R}_{+ \frac{\Delta E}{E}} - \vec{R}_{- \frac{\Delta E}{E}}}{2\frac{\Delta E}{E}} \quad \text{DE/E=0.0025} \\ \vec{C} &= \begin{pmatrix} \frac{\vec{x}_{+\Delta V} - \vec{x}_{-\Delta V}}{2\Delta V} \\ \frac{\vec{y}_{+\Delta H} - \vec{y}_{-\Delta H}}{2\Delta H} \end{pmatrix} \quad \text{RM V Correctors} \\ \vec{\beta} &= \begin{pmatrix} \frac{\vec{x}_{+\Delta H} - \vec{x}_{-\Delta H}}{2\Delta H} \\ \frac{\vec{y}_{+\Delta V} - \vec{y}_{-\Delta V}}{2\Delta V} \end{pmatrix} \quad \text{RM H Correctors} \end{split}$$

Beta Functions before and after correction for a typical set of misalignment leading to ~2pm rad vertical emittance

AFTE

Dispersion before and after correction for a tipical set of misalignment leading to ~2pm rad vertical emittance

BEFORE

AFTER

Orbit before and after correction for a tipical set of misalignment leading to ~2pm rad vertical emittance

BEFORE

AFTEF

PREVIOUS WORK: HER without Final Focus

Misalignment	Tolerated value		
Quadrupole H and	V 300 µm		
Quadrupole Ti	It 300 µrad		
Sextupole H and	V 150 µm		
BPM offset H and	V 400 µm		
BPM resolutio	n 1 µm		

Corrector & Monitors **168 H and V**

LER no ff no sol Different misalignment analyzed separately

SOLENOID OFF

RF OFF

LER without Final Focus

Corrector & Monitors 167 H and V Center of all drifts L > 1.2 m

Misalignment	Tolerated value	
	V 200 um	
	ν 200 μm	
Quadrupole I	It 200 µrad	
Sextupole H and	V 100 μm	
	n 1μm	
BPM Offse	t 200 μm	

LER without Final Focus

SOLENOID OFF

RF OFF

Misalignment	Tolerated value
Quadrupole H and V	200 µm
Quadrupole Tilt	200 µrad
Sextupole H and V	100 µm
BPM resolution	1 µm
BPM Offset	200 µm

SAME MISALIGNMENTS

Average emittance increased of 50% respect to 167 correctors any way <u>10 times smaller than design emittance.</u>

• More sensible to misalignments

Correctors and monitors at every quadrupole

LER

Elements From QF1R to QF1L are considered as a single element.

167ARCS+60FF

Misalignment	Tolerated value	
	ARC	FF
Quadrupole H and V	50 µm	20 µm
Quadrupole Tilt	50 µrad	20 µrad
Sextupole H and V	50 µm	20 µm
BPM resolution	1 µm	1 µm
BPM Offset	50 µm	20 µm

Tolerated Misalignments are smaller that this values.

LER

Elements From QF1R to QF1L are considered as a single element.

109-ARCS+60-FF

Misalignment	Tolerated value	
	ARC	FF
Quadrupole H and V	50 µm	20 µm
Quadrupole Tilt	50 µrad	20 µrad
Sextupole H and V	50 µm	20 µm
BPM resolution	1 µm	1 µm
BPM Offset	50 µm	20 µm

LER

Elements From QF1R to QF1L are considered as a single element.

109ARCS+60FF

Misalignment	Value	
	ARC	FF
Quadrupole H and V	50 µm	00 µm
Quadrupole Tilt	50 µrad	00 µrad
Sextupole H and V	50 µm	00 µm
BPM resolution	1 µm	0 µm
BPM Offset	50 µm	00 µm

The introduction of the Final Focus In the lattice defines more stringent tolerances also in the arcs

Conclusions

• LER ARC's tolerances are evaluated using a Response Matrix technique that optimizes orbit, in order to recover the design values for Dispersion, Coupling and Beta-beating, and obtain the lowest possible vertical emittance.

• Different sets of correctors are tested, showing that the number may be reduced to 109.

 The introduction of the Final Focus in the lattice introduces stringent restrictions on alignment of both Final Focus and ARCS