
STORAGE EVOLUTION
AND TRENDS

G. Donvito
INFN-Bari

Outline
Main requirements (problems) on accessing data

Trends and evolution on data management

LHC use case

Requirements

Observations on firsts months of runs

New trends on LHC storage management

On going storage activities

Hadoop

Test on going

Main requirements (problems)
on accessing data

CPUs are increasing constantly in computing power

Storage devices are growing in size

but not in performance

packaging more TB into the same size is not the way to
achieve better performances

The network is not anymore the main bottleneck

The CPUs are not efficiently used if the process are
waiting for data

Performance/$M trends

Trends and evolution on data management

The key is to parallelise the data access

Using as much spindle as possible

Pre-fetching could be the a solution

It is important to know the application and the access
patterns

It is important to write data thinking on how they
will be read

Physics data are “write-once-ready-many”

Posix access is becoming a required “added value”

LHC Use case
Huge dataset size

order of (tens of) TB for a single analysis
Moving a single dataset may require days

while an analysis should take few hours
Hundreds of widely different sites

tens of thousands of CPUs
Petabytes of storage

It is important to optimise the usage of resource
both CPU and storage

LHC Use case

Replicating data manually is a time consuming activity
that should take input from usage statistics
Huge physics community with widely different
computing skills
Smallest site (T3) could have difficulties to set-up and
maintain a reliable storage installation
End user interactive analysis is growing in size and
requirements
The analysis jobs are often I/O bounded already now

It could be worst as the amount of data increases

LHC: Observations on firsts months of run

WLCG Jamboree on Evolution of WLCG Data &
Storage Management 16 - 18 June 2010
(http://indico.cern.ch/conferenceDisplay.py?confId=92416)

“Started with a general concern about how we would
support analysis access to users as we get additional data”
Lots of choices on the LHC computing model were based
on limitations ... or assumption of limitations (storage
cost, network bandwidth, predictable utilization, etc)

a number of those limitation are not anymore valid
“Improve the transparency of access.”
“Introduce less deterministic features to the system to
improve flexibility and response”

http://indico.cern.ch/conferenceDisplay.py?confId=92416
http://indico.cern.ch/conferenceDisplay.py?confId=92416

LHC: Observations on firsts months of run

Ideas and problems

Could we avoid using different access protocol for each
site?
Is there any protocol that allow a efficient CPU usage but
provides the capabilities to access files from another site?
Can we exploit fruitful a peer-to-peer system in order to
transfer files among sites?
Can we use “predictable data movement” ***only*** for
T0-T1 flows?
Is the Tape-archive model still valid?

LHC: Observations on firsts months of run
Feedback on first experiences of data taking

The Monarc model for data transfer is often broken:
A full mesh is often used (=> transfers between T1-T2
belonging to different “regions”)

The HSM model is not really used in production:
several system to pre-stage from tape or pinning on disk
are always needed to cope with CPU request for data
access

There is the need to simplify the framework for accessing
data to the final user, providing advanced capabilities such
as:

intelligent defaults, file collection, load-aware replication,
meta-data, etc

LHC: Observations on firsts months of run
Feedback on first experiences of data taking

Nowadays the network give the possibility to implement
different caching policies in order to avoid the model: “Dataset
scheduled transfer based on imagined demand”
The main issue with the file catalogue is the consistency with
the underling storage systems.

advanced features could be implemented into the catalog:
ACLs, overall quotas, replica/cache management

The scenario could dramatically change if the scheduler is
organized on a “per node” basis

The memory footprint could be reduced, I/O could be
optimized, etc

It is evident the need of a “global home directory” for the output
of the end user analysis

LHC: Observations on firsts months of run
Feedback on first experiences of data taking

In the industry there is a trend to exploit “multi-tiered” storage
in order to obtain the right balance between performance and
TCO
An HEPIX group is constantly testing new experiments
software against the storage solution on the market in order to
understand the performance:

at the moment it looks like posix files-system (GPFS,
LUSTRE, AFS) are the best solution from a performance
point of view

NFS4.1 (PNFS) looks promising as “standard” protocols as it will
be supported natively from several storage vendors.

dCache and DPM will provide NFS4.1 interface in the near
future

LHC: Observations on firsts months of run
Feedback on first experiences of data taking

Xrootd is a scalable and robust system born to fulfil the HEP
community requirements and needs

A great work was carried on in oder to improve the performance
on network with high latency
KIT provided a good feedback on the usage of Xrootd in
production for both tape and disk management

Root is providing new releases that increase the performance
through using prefetch&caching
SRM look like too complex and invasive for the end user
 Alien FC is providing a lots of feature needed from the final user:

Global unique namespace, Unix-like CLI, ACLs, input and
output files, file collections, automatic SE selection, quota
system, integrated with ROOT

CALTech 10GB/
180msRTT +
TTreeCache
+Xrd latency

hiding

Caching the same file

New trends on LHC storage management

Conclusion from the Jamboree (from Ian Bird)
Storage:

Separate archive (Tape) and cache systems with different
interfaces
Try to never read from tape

Data Access Layer:
Need a combination of data placement and dynamic cache
Caches could optimize the disk space usage (or reduce it)
Can’t assume catalogues are up-to-date, so it is needed a fall-
back solution (remote access) in case of failure
Model of access is file-system-like

New trends on LHC storage management

Conclusion from the Jamboree (from Ian Bird)
Data Transfer:

Need a reliable way to move data from/to an archive (or
point to point)
Need a placement mechanism
Need transport for caching
Need remote access mechanism

Namespace and Cataloques:
Want a dynamic catalogue (maybe it could be LFC+MQ)
The computing model should recognise that the
information is only “best-guess” (not 100% reliable)

Grid wide home directory
Is needed, but not already clear how to do it

New trends on LHC storage management

Demonstrator started

1. Brian Bockelman: xrootd-enable filesystems (HDFS, Posix, dcache +
others) at some volunteer sites. Global re-director at 1 location, allow
the system to cache as needed for Tier 3 use.

2. Massimo Lamanna: very similar proposal with same use cases for
ATLAS. Also include job brokering. Potential to collaborate with 1)?

3. Graeme Stewart: Panda Dynamic Data Placement.
4. LHCb/Dirac – very similar ideas to 3).
5. Gerd Behrman: ARC caching technology: propose to improve the

front-end to be able to work without the ARC Control Tower, also to
decouple the caching tool from the CE.

6. Jean-Philippe Baud: Catalogue synchronisation with storage using the
Active MQ message broker. a) add files, catalogue them and propagate
to other catalogues; b) remove entries when files are lost if a disk fails;
c) remove a dataset from a central catalogue and propagate to other
catalogues.

New trends on LHC storage management
Demonstrator started

7. Simon Metson: DAS for CMS. Aim to have a demo in the summer.
8. Oscar Koeroo: Demonstrate that Cassandra (from Apache) can provide

a complete cataloguing and messaging system.
9. Pablo Saiz: Based on Alien FC – comparison of functionality, and

demonstration of use in another experiment.
10. Jeff Templon: Demonstrate the Coral Content Delivery Network –

essentially as-is. Proposed metrics for success.
11. Peter Elmer: wants to show workflow management mapping to the

available hardware (relevant to use of multi-core hardware).
12. Dirk Duellmann/Rene Brun: prototype proxy-cache based on xrootd.

Can be used now to test several things.
13. Jean-Philippe Baud+Gerd Behrman + Andrei Maslennikov + DESY: use

of NFS4.1 as access protocol.
14. Jens Jensen + (other name?): simple ideas to immediately speed up use

of SRM and to quickly improve the lcg-cp utility

On going storage activities
One of the main interesting demonstrator is the CMS-
Xrootd demonstrator (B. Bockelman)

Each site exports the
global namespace, and
translates the file open
requests to the local
namespace.

Elapsed time is often
around 100ms.

This thing is real

• This would be a boring project if only
Nebraska participated.

• Thanks to (no particular order): PSI, Bari,
FNAL, Caltech, UCSD, Florida, Purdue,
Wisconsin, and UCR for participating.

• This only gets better with more
participants. Send me an email!

Future scenarios

Federating Xrootd:
All data is accessed via a single global namespace (the CMS namespace)

No need to know location info
The system performs site selection.

Or you can use the bittorrent-like mode and download from all sites
- this auto- tunes to select the best server.

Caching
Xrootd can additionally act as a cache and bring the complete file
locally.
In this case, the client will talk to a local redirector which will decide
whether the file is local and download it from the global federation if
not.

Once cached locally, the cache can be reused (both by local users
and in the global architecture)!

On going storage activities

Future scenarios

Caching Architecture:
Caching Architecture

Global Xrootd
Redirector

Tier 3 Site Remote Site

User
Analysis

Xrootd Cache

Xrootd Local
Redirector

Xrootd Local
Data

Xrootd CacheXrootd Cache

Xrootd

Remote Site

Xrootd

On going storage activities

Future scenarios

Caching Downloads:
The caching architecture can be combined with the bittorrent mode of
xrdcp to optimize the performance of downloads.

Errors are only propagated if all sources error out.

Issues
Namespace consistency is assumed.
Unsure about data integrity issues.
Authorization issues when redirecting.
Does not solve data archival/metadata issues.
Caching approaches have drawbacks thoroughly discussed by
computer scientists.

On going storage activities

Few test

Evolution of CMSSW access patterns
Version, ROOT reads, actual reads, commentary

3_6_1, 13807, 11038, TTreeCache off (default for release)
3_7_0, 13807, 6264, TTreeCache on (default for release)
3_8_2, 14254, 6711, Increase probably due to construction of
index into file
3_9_0, 14014, 3371, Decrease likely due to more aggressive
caching (Run and Lumi products are now cached).

On going storage activities

CMSSW Improvements
• In order to improve WAN streaming

performance, we worked hard with the
CMSSW team to optimize the I/O code.

• A sample, I/O-intensive analysis of 60k evts
reading data from FNAL dCache/Xrootd:

Site Ping time Wall time
FNAL .1ms 80s

Nebraska 17ms 80s
CERN 128ms 161s

FNAL/dCap .1ms 135s
This test designed to demonstrate one analysis scenario; there are many, and not all work as well!

Xrootd as fallback solution:

It is already possible to use global xrootd redirector in case of
missing or corrupted file in a CMS site.

It requires a simple site configuration
and no reconfiguration needed as User level

It is simple also for a site to participate to the global
redirector:

Plugin is available and installable for dCache, Lustre/GPFS
and Hadoop

On going storage activities

HADOOP

It is one of the most interesting technology that could be
investigating

On going storage activities

Hadoop: concepts and architecture

Moving data to CPU is costly
Network infrastructure
And performance => latency

Moving computational to data could be the solution
Scaling the storage performance, following the increase of
computational capacity, is hard
Increasing the number of disks together with the number of
CPU could help the performance
There is the need to take into account machines failures in a
computing centre
DB also could benefit from this architecture

Hadoop: highlight

It is developed till 2003 (born @google)
It is a framework that provide: file-system, scheduler
capabilities, distributed database
Fault tolerant

Data replication
DataNode failure is ~transparent
Rack awareness

Highly scalable
It is designed to use the local disk on the worker
nodes

Java based
XML based config file

Hadoop: highlight

Using FUSE => some posix call supported
Basically “all read operation” and only “serial write operations”
Web interface to monitor the HDFS system
Java APIs to build code is data location aware
CKSUM at file-block level
SPOF: metadata host
HDFS shell to interact natively with the file system
Metadata hosted in memory
sync with the file-system
it is easy to do back-up of the metadata

Hadoop: concepts and architecture

! !

!"#$%&'(%)(#()*+,(-.*$,

/012(3+*,"$

4+*,"$("%5,

6#&,(6%5,
4.,#$,()*+,

4+%7,()*+,

0#$#(6%5,

0#$#(6%5,

0#$#(6%5,

2+*5,(*"78*.,5(9':(;/#5%%8(<(=>,(5,)*"*$*?,(@A*5,BC(=%&(D>*$,C(EFG,*++'

D.*$,(8#3H,$

!3H(8#3H,$

Hadoop: concepts and architecture

! !

!"#$%&'()*+

,'()*+%*-.)

/01)%/-.)
23)*%4(')

,'-5)%4(')

"0+0%/-.)

"0+0%/-.)

"0+0%/-.)

$'(.)%(*53(6).%789%:!0.--3%;%<=)%.)4(*(+(>)%?@(.)AB%<-1%C=(+)B%2DE)(''8

E)0.%7'-&F5

E)0.%7'-&F5

E)0.%7'-&F5

G*0+-18%-4%0%4(')%6)0.

 Splitting files in
different pools may
give performance
benefit when reading
them back

 having the data
replicated could be of
help

Hadoop: concepts and architecture

! !

!"#$%&'()*+,-*./%$-0,-'12

$)*3'%*/4(*0'3%526%7!,3..(%8%9:'%3';*/*-*<'%1=*3'>?%9.@%A:*-'?%BC&'*))2

",-,+'/-'0

&,+D &,+D

Hadoop: concepts and architecture

! !

!"!!#!!!$! %!&'())*+! %!,!+!-!(!.!+
!"#$"#

%&'"(#

%&'"(#

)*$"#

+!,-(.#!./-#-0
1"#$"#'.-.(!#.(&''./-#-0
1"#$"#.,-*.,2&-$(3.4!5&0

62"77(&.'!%#'.)*$"#.83.9&30
:&/",&'.!"#$"#.');*)7),-*#(30

Hadoop: few examples

10x data
~6x time

Per node: 2 quad core Xeons @ 2.5ghz, 4 SATA disks, 8G RAM
(upgraded to

16GB before petabyte sort), 1 gigabit ethernet.
Per Rack: 40 nodes, 8 gigabit ethernet uplinks.

“Sort Exercise”

Hadoop: few examples
“CMS example” (T2_US_Nebraska)
•Numbers
•2.5TB < Each DataNode < 21TB
•~260 servers
•1.5PB of storage (700TB really usable)
•~1600 Core
•SRM/gridftp layer provided by FUSE and BestMan
•Xrootd export

•Reported Prod & Cons
•Easy to deal with failures (file-systems, datanodes, racks, etc)
•Scalable
•Open Source
•Few monitoring tool already available
•Reliance on FUSE
•Real cost vs availability vs performance ?
•CPU efficiency?

Geographical distributed Storage Element

Hadoop provides:
automatic replica management and storage distribution
rack awareness
advanced (and plu!able) placement policies
good monitoring features

Why don’t we try to use it on a WAN environment to see how it works?
The concept of rack is used to identify a Site
We need a performant WAN link between site
It could provide good reliability of data... also in case a whole site
become temporarily unavailable

Hadoop: few examples

Geographical distributed Storage Element

Hadoop: few examples

Bari
Naples

Geographical distributed Storage Element

Hadoop: few examples

HARDWARE	 IN	 THE	 NAPLES	 SITE	 FOR	
THE	 FIRST	 TESTBED	 WITH	 THE	 BARI	 SITE

3	 SERVER	 R200	 WITH	 2	 GigabitETH	
IN	 BONDING	
250GB	 OF	 DATA	 DISK	 AVAILABLE

10	 SERVER	 BLADE	 WITH	 2	
GigabitETH	 IN	 BONDING	 AND	
100GB	 OF	 DATA	 DIKS	 AVAILABLE

THE	 SERVER	 ARE	 CONNECTED	 ON	 A	
1Gbit/s	 SWITCH	

OS	 -‐	 SL5.3

Geographical distributed Storage Element

Hadoop: few examples

HARDWARE	 IN	 THE	 Bari	 SITE	 FOR	 THE	
FIRST	 TESTBED	 WITH	 THE	 BARI	 SITE

3	 SERVER	 SuperMicro	 WITH	 2	
GigabitETH	 IN	 BONDING	
5	 disk	 in	 total	 from	 50GB	 to	 500GB	

THE	 SERVER	 ARE	 CONNECTED	 ON	 A	
1Gbit/s	 (non-‐blocking)	 SWITCH	

OS	 -‐	 SL5.4

Namenode are installed at Bari
SecondaryNameNode will be installed at Naples

Geographical distributed Storage Element

Few test:
Network bandwidth: ~600 Mbit/s
during a read operation the user do no see errors also if the whole
Naples site goes down suddenly
Writing & Replicating data (2 clients): ~40MB/s sustained
Reading data (2 Client): ~100MB/s sustained

Hadoop: few examples

WORK IN PROGRESS

Conclusions

LHC Community is trying to move away from a rigid and
schematic data-management framework to a more flexible
and dynamic one

It is important that the new framework is much more
transparent and user friendly
It is important to look at already in place technologies
as the time-scale is 2013

It is important to work on the experiment software
framework as this could lead to great improvement in
performance and efficiency:

The framework should cooperate with the storage
system as much as possible

