Proposal for a new build system with CMake
The CMake system

Marco Corvo

University of Padova

X1l SuperB General Meeting

September 30, 2010

Introduction
[leJe]e]

What is CMake?

@ Generates native build environments

@ UNIX/Linux: Makefiles
o Windows: VS Projects/Workspaces
e Mac OS: Xcode

© Opensource
© Cross-platform
© Integrates testing and packaging systems

Introduction

0@00

CMake features

© Manage complex, large build environments (KDE4)
@ Very Flexible and Extensible

o Support for Macros

@ Modules for finding/configuring software (bunch of modules
already available)

@ Extend CMake for new platforms and languages

o Create custom targets/commands

@ Run external programs

© Very simple, intuitive syntax

@ Support for regular expressions (*nix style)

@ Support for In-Source and Out-of-Source builds
© Cross Compiling

@ Integrated Testing and Packaging (Ctest, CPack)

Introduction
[e]e] o]

Why Use CMake?

PRroOS
@ CMake depends only on C++ compiler

© CMake supports great variety of platforms (basically every
*ix, Mac OS, Windows)

© CMake generates only Makefiles for all supported platforms

© CMake additionally can produce project files for IDE’s
(KDevelop, XCode, VStudio)

Introduction
[e]e]e])

Why Use CMake?

PROS (cont'd)

© More usefull error messages when making a mistake in editing
input files

© Easy to use configure-like framework

© CMake has simple syntax

© CMake has a testing framework

© CMake is faster than autotools (does not use libtools)

CMake basics

o CMake works with CMakeLists.txt files, written in the CMake
syntax, which have the function of configuring the project and
the single packages.

@ There are two kinds of CMakeLists.txt: the main one in the

root directory of the project, then one in each package
directory

@ Every package has its own Cmakelists.txt containing the
package parameters, like e.g. source files, special c++ flags,
libraries, platform conditions ...

@ Every file then specifies which libraries and executables, if any,
should be built.

Workflow

CMakelLists.txt

Makefile

FastSim example
@00

How to use CMake

@ Create a build directory (out-of-source build concept)
o | choose to create my build directory into the top dir of the
release
@ cd FastSim/V0.2.X
¢ mkdir Build ; cd Build
@ Configure FastSim for your system
@ cmake [options] <path to main CMakeLists.txt>
© Build the package

o make

FastSim example
oeo

Basic structure for CMake and

© The main CmakeLists.txt file is in the top level of the release

Top-Level CmakeLists.txt
project(FastSim)

Load some basic macros which are needed later on and find some usefull package
include(MyMacros)
find_package(CLHEP)

set(EXECUTABLE_OUTPUT_PATH path to binary dir)

set(LIBRARY_OUTPUT_PATH path to library dir)

ADD_SUBDIRECTORY(KalmanTrack)

@ when CMake finds an ADD_SUBDIRECTORY it stops execution, enters
the directory and looks for a new CMakelLists.txt to execute
@ The CMakelLists.txt in the package subdir declares which libraries and
executables to build

Subdir (package) level CmakeLists.txt

AIf)D_LIBRARY(KaImanTrack $sources)
ADD_EXECUTABLE(TestKalmanTrack)
TARGET_LINK_LIBRARIES(TestKalmanTrack libl lib2 ...)

FastSim example
ooe

Basic structure for CMake and (cont'd)

@ | choose to keep in-package CMakeLists.txt file as simple as
possible

@ All relevant things are inside CMake macros and the main

CMakelListsFile.txt

@ This means that to add a new package to the cmake system
it's just a matter of putting a template
CMakelists.txt file and eventually add all package specific stuff

#

Set specific compiler flags for the package

#

set(${ pkgname} _.CXX_FLAGS “-Wall -Wno-sign-compare -Wno-parentheses -fpermissive -DCLHEP_CONFIG_FILE:
set(CMAKE_CXX_FLAGS “§{CMAKE_CXX_FLAGS} ${${pkgname}_CXX_FLAGS}")

configPkg(${pkgname}) # main macro

#

Generate library

#
add_library(${pkgname} ${Sources})
target_link_libraries(${ pkgname} ${LIB_LINK_LIST})

add_executable(exe ${source file})
target_link_libraries(exe ${LIB_LINK_LIST})
add_test(testExe exe)

CMake syntax
@00

Very quick summary on CMake syntax

*]
]
*]
*]
*]

This is a comment
Commands syntax: COMMAND(argl arg2 ...)
Lists A;B;C # semi-colon separated values

Variables

Conditional constructs
o IF() ... ELSE()/ELSEIF() ...ENDIF()
o Very useful: IF(APPLE); IF(UNIX); IF(WIN32)
s WHILE() ... ENDWHILE()
s FOREACH() ... ENDFOREACH()

Regular expressions

(]

CMake syntax
(o] le}

Very quick summary on CMake syntax (cont'd)

o ADD_EXECUTABLE
o ADD_LIBRARY

o ADD_DEPENDENCIES(targetl t2 t3) targetl depends on t2
and t3

o ADD_DEFINITIONS(-Wall -ansi -pedantic)

@ TARGET_LINK_LIBRARIES(target-name libl lib2 ...)
Individual settings for each target

o LINK_LIBRARIES(libl lib2 ...) All targets link with the
same set of libs

o MESSAGE(STATUS—FATAL_ERROR message)

@ INSTALL(FILES f1 f2 f3 DESTINATION .)

o DESTINATION relative to ${CMAKE_INSTALL_PREFIX}

CMake syntax
[efe]]

Very quick summary on CMake syntax (cont'd)

o SET(VAR value [CACHE TYPE DOCSTRING [FORCE])

o LIST(APPEND | INSERT | LENGTH | GET |
REMOVE_ITEM | REMOVEAT | SORT ...)

o FILE(WRITE | READ | APPEND | GLOB | GLOB_RECURSE
| REMOVE | MAKE_DIRECTORY ...)

FIND_FILE
FIND_LIBRARY
FIND_-PROGRAM
FIND_PACKAGE

EXEC_PROGRAM(bin [work_dir] ARGS
...[OUTPUT_VARIABLE var] [RETURN_VALUE var])

@ MESSAGE(STATUS | FATAL_.ERROR message)

e © ¢ ¢ ¢

	Introduction
	CMake Intro

	Code
	Basic Code

	FastSim example
	Layout

	CMake syntax
	Essential commands

