
Introduction Code FastSim example CMake syntax

Proposal for a new build system with CMake
The CMake system

Marco Corvo

University of Padova

XIII SuperB General Meeting

September 30, 2010

Introduction Code FastSim example CMake syntax

What is CMake?

1 Generates native build environments

UNIX/Linux: Makefiles
Windows: VS Projects/Workspaces
Mac OS: Xcode

2 Opensource

3 Cross-platform

4 Integrates testing and packaging systems

Introduction Code FastSim example CMake syntax

CMake features

1 Manage complex, large build environments (KDE4)
2 Very Flexible and Extensible

Support for Macros
Modules for finding/configuring software (bunch of modules
already available)
Extend CMake for new platforms and languages
Create custom targets/commands
Run external programs

3 Very simple, intuitive syntax

4 Support for regular expressions (*nix style)

5 Support for In-Source and Out-of-Source builds

6 Cross Compiling

7 Integrated Testing and Packaging (Ctest, CPack)

Introduction Code FastSim example CMake syntax

Why Use CMake?

Pros

1 CMake depends only on C++ compiler

2 CMake supports great variety of platforms (basically every
*ix, Mac OS, Windows)

3 CMake generates only Makefiles for all supported platforms

4 CMake additionally can produce project files for IDE’s
(KDevelop, XCode, VStudio)

Introduction Code FastSim example CMake syntax

Why Use CMake?

Pros (cont’d)

1 More usefull error messages when making a mistake in editing
input files

2 Easy to use configure-like framework

3 CMake has simple syntax

4 CMake has a testing framework

5 CMake is faster than autotools (does not use libtools)

Introduction Code FastSim example CMake syntax

CMake basics

CMake works with CMakeLists.txt files, written in the CMake
syntax, which have the function of configuring the project and
the single packages.

There are two kinds of CMakeLists.txt: the main one in the
root directory of the project, then one in each package
directory

Every package has its own CmakeLists.txt containing the
package parameters, like e.g. source files, special c++ flags,
libraries, platform conditions . . .

Every file then specifies which libraries and executables, if any,
should be built.

Introduction Code FastSim example CMake syntax

Workflow

CMakeLists.txt

��

CMake

��

Makefile

��

Make

Introduction Code FastSim example CMake syntax

How to use CMake

1 Create a build directory (out-of-source build concept)

I choose to create my build directory into the top dir of the
release
cd FastSim/V0.2.X
mkdir Build ; cd Build

2 Configure FastSim for your system

cmake [options] <path to main CMakeLists.txt>

3 Build the package

make

Introduction Code FastSim example CMake syntax

Basic structure for CMake and FastSim

1 The main CmakeLists.txt file is in the top level of the release

Top-Level CmakeLists.txt
project(FastSim)
. . .
Load some basic macros which are needed later on and find some usefull package
include(MyMacros)
find package(CLHEP)
. . .

set(EXECUTABLE OUTPUT PATH p̈ath to binary dir̈)

set(LIBRARY OUTPUT PATH path ẗo library dir̈)
. . .
ADD SUBDIRECTORY(KalmanTrack)
. . .

when CMake finds an ADD SUBDIRECTORY it stops execution, enters
the directory and looks for a new CMakeLists.txt to execute

2 The CMakeLists.txt in the package subdir declares which libraries and

executables to build

Subdir (package) level CmakeLists.txt
. . .
ADD LIBRARY(KalmanTrack $sources)
ADD EXECUTABLE(TestKalmanTrack)
TARGET LINK LIBRARIES(TestKalmanTrack lib1 lib2 . . .)
. . .

Introduction Code FastSim example CMake syntax

Basic structure for CMake and FastSim (cont’d)

I choose to keep in-package CMakeLists.txt file as simple as
possible

All relevant things are inside CMake macros and the main
CMakeListsFile.txt
This means that to add a new package to the cmake system
it’s just a matter of putting a template
CMakeLists.txt file and eventually add all package specific stuff

#
Set specific compiler flags for the package
#
set(${pkgname} CXX FLAGS “-Wall -Wno-sign-compare -Wno-parentheses -fpermissive -DCLHEP CONFIG FILE=CLHEP/config/CLHEP-gcc-3.h”)
set(CMAKE CXX FLAGS “${CMAKE CXX FLAGS} ${${pkgname} CXX FLAGS}”)
configPkg(${pkgname}) # main macro
#
Generate library
#
add library(${pkgname} ${Sources})
target link libraries(${pkgname} ${LIB LINK LIST})

add executable(exe ${source file})
target link libraries(exe ${LIB LINK LIST})
add test(testExe exe)

Introduction Code FastSim example CMake syntax

Very quick summary on CMake syntax

This is a comment

Commands syntax: COMMAND(arg1 arg2 . . .)

Lists A;B;C # semi-colon separated values

Variables

Conditional constructs

IF() . . . ELSE()/ELSEIF() . . . ENDIF()
Very useful: IF(APPLE); IF(UNIX); IF(WIN32)
WHILE() . . . ENDWHILE()
FOREACH() . . . ENDFOREACH()

Regular expressions

Introduction Code FastSim example CMake syntax

Very quick summary on CMake syntax (cont’d)

ADD EXECUTABLE

ADD LIBRARY

ADD DEPENDENCIES(target1 t2 t3) target1 depends on t2
and t3

ADD DEFINITIONS(-Wall -ansi -pedantic)

TARGET LINK LIBRARIES(target-name lib1 lib2 . . .)
Individual settings for each target

LINK LIBRARIES(lib1 lib2 . . .) All targets link with the
same set of libs

MESSAGE(STATUS—FATAL ERROR message)

INSTALL(FILES f1 f2 f3 DESTINATION .)

DESTINATION relative to ${CMAKE INSTALL PREFIX}

Introduction Code FastSim example CMake syntax

Very quick summary on CMake syntax (cont’d)

SET(VAR value [CACHE TYPE DOCSTRING [FORCE])

LIST(APPEND | INSERT | LENGTH | GET |
REMOVE ITEM | REMOVE AT | SORT . . .)

FILE(WRITE | READ | APPEND | GLOB | GLOB RECURSE
| REMOVE | MAKE DIRECTORY . . .)

FIND FILE

FIND LIBRARY

FIND PROGRAM

FIND PACKAGE

EXEC PROGRAM(bin [work dir] ARGS
. . . [OUTPUT VARIABLE var] [RETURN VALUE var])

MESSAGE(STATUS | FATAL ERROR message)

	Introduction
	CMake Intro

	Code
	Basic Code

	FastSim example
	Layout

	CMake syntax
	Essential commands

