Progress on the FTM prototype

A small look in the past

- The past prototype
 - DLC FTM foil
 - 40/90 μm TOP/BOTTOM holes
 - 140 μm pitch
 - DLC Anode foil
 - Current measurement

Measurements - Setup

- Main goal to measure the effective gain
 - Estimation of the ionization current

Measurements - Results

Simulations – ANSYS/GARFIELD++

Simulations – ANSYS/GARFIELD++

- Polya Fit on the distribution
 - Better estimation of Gain
 - Gain shown for Amplification 100 kV/cm
 - Gain: 2477

Measurements vs Simulation

Issues – Mistakes - Failures

- Issues
 - 100 kV/cm amplification (or higher) → not possible for current measurement
 - No signal observed at the maximum achievable amplification field (97.5 kV/cm)
- Mistakes
 - Not proper training of the foil
 - CO₂ flushing at high field (lower than the Passchen limit)
 - Possibly the reason why 100 kV/cm could not be reached
- Opening of the prototype
 - Observed defects on the foil → with the digital zoom of a phone
 - A microscope could be useful for further inspection

Change the foil of the prototype

- In January received a new foil
 - Similar production process with the previous foil
 - No DLC attached on the TOP side BUT Cu
 - Slightly bigger holes \rightarrow 50/100 µm holes, 140 µm pitch

DLC

Correcting the past mistakes

Cu foil underwent a 3-day training by flushing with CO2 and applying
 Very high amplification field > 140 kV/cm

 Eventually the foil was able to operate in the "nominal" for a FTM foil field of 120 kV/cm without any problem

- Signal observed
- Spectrum observed

Change of the foil - differences

DLC Foil	Cu Foil
DLC on the top surface	Cu on top surface
Hole diameters 40/90 μm	Hole diameters 50/100 μm
Max. achievable operation Amp. Field == 97.5 kV/cm	Max. achievable operation Amp. Field == 135 kV/cm (for short period)

Measurements performed

- Success in observing signal
 - The readout chain:

Rate measurement

- Setup is the one of the previous slide
 - X-ray gun settings:
 - $I = (5-80)\mu A, V = 50kV$
 - No filter, no collimator
 - Distance from the detector – minimum (almost touching the Kapton window)
 - Amplifier settings as in GEM QC5
 - Discr. Threshold: -90 mV

Threshold Scan

- From the Rate values, huge bump for only 5 kV/cm amplification field difference
- Threshold scan to use an optimal threshold setting
- From the plot seems that
- -50 mV is the most optimal

Effective gain

- Since we observe signal
 - Observe spectrum and calculate #primaries → primary current
 - → Effective Gain

Spectrum

- Cu photopeak observed
 - X-ray gun: 5uA, 40kV
 - Filter applied3 cu filter (from amptek kit)
 - 2 mm collimator
- Issue in the calibration as we
 Need to subtract the background
- No other source apart from the
 X-ray gun is available at the moment
- For the rest of the measurements
 I use #Primaries = 346 (like in GEM)

Effective Gain

- Xray gun settings
 - $I = 5 \mu A$, V = 40kV
 - 2 mm collimator + 3 cu foil filters
- Threshold at -50mV

• Drift field = 3 kV/cm

A small comparison

If indeed the #primaries is around 346 (to be confirmed) then we are in a good agreement to what have been measured Also for the resistive foil and the simulation

Remarks

- From what we have performed and measured
 - A resistive foil which needs to operate at 120kV/cm is necessary
 - We now know that the first to do after placing it to the prototype is to train it (~3 days)
 - Operation at 120 kV/cm
 - Investigate the reason why no signal is observe to the already high amplification of 80 90 kV/cm (maybe due to the small active area?)
 - Still need to extract the correct number of primaries in order to accurately estimate the primary current (Rate*N_{primaries}*e)

Something for the future

- What do you think should be done now?
 - Re-do measurements to cross-check and validate the results?
 - Measure the effective gain with the second way (in which we measured for the resistive)?
 - Is a rate capability measurement meaningful?