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Ab initio vs. effective approach

A-body Hamiltonian
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Ab initio approach

A-body wave-function

➟ Solve many-body Schrödinger equation in a controlled, systematically improvable way

Two main options

Effective approach
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○ Since 2010’s
○ GGF, BCC, MR-IMSRG
○ Polynomial scaling

⦿ Ab initio shell model
○ Since 2014
○ Effective interaction via CC/IMSRG
○ Mixed scaling

○ Since 1980’s

○ Factorial scaling
○ Monte Carlo, CI, …

⦿ “Exact” approaches

⦿ Approximate approaches for open-shells

Evolution of ab initio nuclear chart

○ Since 2000’s
○ SCGF, CC, IMSRG
○ Polynomial scaling

⦿ Approximate approaches for closed-shell nuclei



Self-consistent Green’s function approach

⦿ Solution of the A-body Schrödinger equation                                        achieved by

1) Rewriting it in terms of 1-, 2-, …. A-body objects G1=G, G2, … GA (Green’s functions)

2) Expanding these objects in perturbation (in practise G ➟ one-body observables, etc..)

○ Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a
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a

∣∣2 = 1 +
∑
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−ωk
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where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)
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∑
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ρ̃∗
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†
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where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give
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which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =
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k

U k∗
a β

†
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Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑
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∣∣Yk
a

∣∣2 =
∑
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∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlatedself-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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Notes on Gorkov ADC(3) formalism

C. Barbieri,1, ∗ T. Duguet,2, 3, 4, † and V. Somà2, ‡
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(Dated: March 19, 2015)

We extend Gorkov-Green’s function formalism to the algebraic diagrammatic construction scheme
at third order [ADC(3)].

I. INTRODUCTION

There are 17 topologically distinct diagrams contribut-
ing to Gorkov ADC(3), all containing three interaction
lines. One interaction line is always connected to the in-
coming propagator, another one to the outgoing propaga-
tor. The diagrams can be then divided into three classes
depending on the nature of the intermediate interaction
line (not connected to any external line):

• Class A (intermediate “particle-particle1”)

• Class B (intermediate “hole-hole”)

• Class C (intermediate “particle-hole”)

We can further label a diagram according to the posi-
tion of the “hole” line (first from the left, second or third)
in the top and bottom interaction respectively, i.e. each
diagram will be denoted with Xij , where X ∈ {A,B,C}
and {i, j} ∈ {1, 2, 3}. In Figs. 1, 2 and 3 diagrams of
class A, B and C respectively are displayed.

1
4

A33

1
2

A32 = A31

1
2

A23 = A13 A11 = A22 = A12 = A21

FIG. 1. Gorkov ADC(3) diagrams of class A

∗ c.barbieri@surrey.ac.uk
† thomas.duguet@cea.fr
‡ vittorio.soma@cea.fr

1 In Dyson language.
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FIG. 2. Gorkov ADC(3) diagrams of class B

C33 C32 C31

C23 C22 C21

C13 C12 C11

FIG. 3. Gorkov ADC(3) diagrams of class C
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Heff|Ψeff⟩ = E|Ψeff⟩
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p
ap−q
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∑

f

δ(ω + Ei − Ef ) |⟨Ψf |R(q)|Ψi⟩|
2

Σ  = + + +

ADC(1)=HF ADC(2) ADC(3) ADC(∞)=exact

⦿ Access a variety of quantities 

○ One-body GF  ➝  Ground-state properties of even-even A + spectra of odd-even neighbours

○ Two-body GF  ➝  Excited spectrum of even-even A

○ Self-energy      ➝  Optical potential for nucleon-nucleus scattering

Algebraic 
Diagrammatic 
Construction

⦿ Self-energy expansion



results when doing calculations in momentum space. So
n=6 was chosen in [73, 77]. In fact, in [73] independence of
observables for n 5. is explitely demonstrated. Other
important progress made in [73] was the introduction of a
better scheme to quantify the theoretical uncertainties. For
that, one first has to analyze the possible sources of
uncertainties (see also [78, 79]). These include (1) the
systematic uncertainty due to truncation of the chiral
expansion at a given order, (2) the uncertainty in the
knowledge of NQ LECs which govern the long-range part
of the nuclear force, (3) the uncertainty in the determination
of LECs accompanying the contact interactions; and (4)
uncertainties in the experimental data or, in the partial wave
analysis if that is used to determine the LECs. As described
above, there has been much progress in determining the NQ
LECs, so we concentrate on the first type of uncertainty. For a
given observable X p( ), where p is the center-of-mass
momentum corresponding to the considered energy, the
expansion parameter in chiral EFT is given by equation (27),
where Λ is the breakdown scale. As discussed in [73], one
should use 600 MeV- � for the cutoffs R 0.8� , 0.9 and
1.0 fm, 500- � MeV for R 1.1 fm� and 400 MeV- � V
for R 1.2� to account for the increasing amount of cutoff
artifacts. In fact, when increasing the r-space cutoff R, one
actually continuously integrates out pion physics, and the
resulting theory would gradually turn into pionless EFT if one
further softened the cutoff. Having verified this estimation of
the breakdown scale on the example of the neutron–proton
scattering total cross section at various chiral orders [73], one
is naturally led to a method that gives a conservative estimate
of the theoretical uncertainty due to the neglect of higher

orders. In this approach, one ascribes the uncertainty
X pN LO4 ( )% of a N4LO prediction X pN LO4 ( ) for an observable

X p( ), as (and similarly for lower orders)

X p Q X p

Q X p X p

Q X p X p

Q X p X p

Q X p X p

max ,
,

,

,

,

34

N LO 6 LO

4 LO NLO

3 NLO N LO

2 N LO N LO

N LO N LO

4

2

2 3

3 4

( ) ( ∣ ( )∣
∣ ( ) ( )∣
∣ ( ) ( )∣
∣ ( ) ( )∣

∣ ( ) ( )∣)
( )

% � q
q �

q �

q �

q �

where the expansion parameter Q is given by equation (27)
and the scale Λ is chosen dependent of the cutoff R as
discussed above. The resulting theoretical uncertainties for
the total cross section and the case of R=0.9 fm were found
in [80] to be consistent with the 68% degree-of-belief
intervals for EFT predictions.

The most sophisticated calculation in the two-nucleon
system is indeed the fifth-order result by Epelbaum et al [77],
which included all new two-pion exchange corrections
appearing at this order as shown in figure 6 (see also the less

Figure 5.Contributions to the effective potential of the 2N, 3N and 4N forces based on Weinberg’s power counting. Here, LO denotes leading
order, NLO next-to-leading order and so on. The various vertices according to equation (29) with 0, 1, 2, 3, 4i% � are denoted by small
circles, big circles, filled boxes, filled diamonds and open boxes, respectively. The boxes surrounding various classes of diagrams are
explained in the text. Figure courtesy of Evgeny Epelbaum.

Figure 6. Fifth-order contributions to the two-pion exchange
potential. Solid and dashed lines refer to nucleons and pions,
respectively. Solid dots denote vertices from the lowest-order NQ
effective Lagrangian. Filled rectangles, ovals and gray circles denote
the order Q4, order Q3 and order Q2 contributions to NQ scattering,
respectively.
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complete work in [81, 82]). Although three-pion exchange
formally appears at N3LO and at N4LO, it has usually been
neglected, as the (nominally) leading 3Q exchange potential at
N3LO is known to be weak compared to the two-pion
exchange [83, 84] and to have negligibly small effect on
phase shifts. However, the subleading corrections at N4LO
are enhanced due to the appearance of the LECs ci [85]. To
check the assertion that the 3Q exchange can still be neglec-
ted, the authors of [77] have carried out a N4LO fit for the
intermediate value of the cutoff of R 1.0� fm, in which the
dominant class-XIII 3Q exchange potential V3

XIII
Q from [85]

was explicitly included. No significant (not even noticeable)
changes both in the quality of the description of the Nijmegen
phase shifts and in the reproduction/predictions for obser-
vables was found. In figure 7, using the above-discussed
method of uncertainty quantification, the S-, P- and D-wave
phase shifts and the mixing angles 1� and 2� at NLO and

higher orders in the chiral expansion for R 0.9� fm are
shown. The various bands result from adding/subtracting the
estimated theoretical uncertainty to/from the calculated
results. Similar results are obtained for np scattering obser-
vables, see [77] for details.

Next, let us consider 3NFs. While providing a small
correction to the nuclear Hamiltonian as compared to the
dominant NN force, its inclusion is mandatory for quantitative
understanding of nuclear structure and reactions, for recent
reviews, see [88, 89]. Historically, the importance of the 3NF
has been pointed out already in the 1930s [90] while the first
phenomenological 3NF models date back to the 1950s.
However, in spite of extensive efforts, the spin structure of the
3NF is still poorly understood [88]. Chiral EFT indeed pro-
vides a suitable theoretical resolution to the long-standing
3NF problem. As already noted, the 3NF only appears two
orders after the leading NN interaction. At this order, there are
only three topologies contributing, see figure 8. The two-pion
exchange topology is given again in terms of the ci, as dis-
cussed in detail in [91]. The so-called D-term, which is related
to the one-pion exchange between a 4N contact term and a
further nucleon, has gained some prominence in the first
decade of this millennium, as many authors have tried to pin it
down based on a cornucopia of reactions, such as Nd Ndl
[94], NN NNQl [92, 93], NN dℓ ℓOl [95–98], d NNQ Hl
[99–101], or the spectra of light nuclei [102], see figure 9
(here, γ denotes a photon, ℓ a lepton and ℓO its corresponding
antineutrino) . This demonstrates again the power of EFT—
very different processes are related through the same LECs

Figure 7. Results for the np S-, P- and D-waves and the mixing
angles 1� , 2� up to N4LO based on the cutoff of R 0.9� fm in
comparison with the Nimjegen PWA [86] and the GWU single-
energy PWA [87]. The bands of increasing width show estimated
theoretical uncertainty at N4LO, N3LO, N2LO and NLO.

Figure 8. Topologies of the leading contributions to the chiral 3NF.
From left to right: Two-pion exchange, one-pion-exchange and 6N
contact interaction.

Figure 9. Various reactions that all are sensitive to the D-term.
Figure courtesy of Evgeny Epelbaum.
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⦿ Chiral EFT provides a systematic framework to construct AN interactions (A=2, 3, …) 

○ High-energy physics unresolved  ➝  soft potentials  ➝  improved many-body convergence
○ Many-body forces and currents consistently derived

➪ Ideally: apply to the many-nucleon system (and propagate the theoretical error)

Chiral effective field theory & nuclear interactions

⦿ Main features:
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FIG. 2: Predictions for the np total cross section based on the
improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green),
N3LO (filled triangles, color online: blue) and N4LO (filled
circles, color online: red) at the laboratory energies of 50,
96, 143 and 200 MeV for the di↵erent choices of the cuto↵:
R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm and
R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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Here, Q is the expansion parameter given by

Q = max
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at

○ A theoretical error can be, in principle, assigned to each order in the expansion



✓ Differential quantities OK

N3LO NN + 3N (400) interaction

[H
ebeler et al. 2015]
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✓ Successful benchmarks ✗ Overbinding

✗ Radii underestimated



⦿ Development of a new ChEFT-inspired Hamiltonian: NNLOsat

RAPID COMMUNICATIONS

A. EKSTRÖM et al. PHYSICAL REVIEW C 91, 051301(R) (2015)

FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a[40,41], b[24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = − 0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths aand effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d -state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp − 7.8258 − 7.8188 − 7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann − 18.929 − 18.900 − 18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp − 23.728 − 23.732 − 23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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○ Simultaneous fit of low-energy constants in 2- and 3-body sectors
○ Data from light nuclei included in fit of low-energy constants
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NNLOsat interaction
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⦿ Generated debate in the community

○ Is it really ab initio?
○ What about associated (EFT) uncertainties?

○ How should we fix the parameters of the interaction?

○ Optimistic view: NNLOsat  indicates that ChEFT strategy is feasible



⦿ Unconventional depletion (“bubble”) in the centre of ρch conjectured for certain nuclei

⦿ Purely quantum mechanical effect

○ ℓ = 0 orbitals display radial distribution peaked at r = 0
○ ℓ ≠ 0 orbitals are instead suppressed at small r

○ Vacancy of s states (ℓ = 0) embedded in larger-ℓ orbitals might cause central depletion 

⦿ Conjectured associated effect on spin-orbit splitting

○ Non-zero derivative at the interior

○ Spin-orbit potential of “non-natural” sign

○ Reduction of (energy) splitting of low-ℓ spin-orbit partners

⦿ Bubbles predicted for hyper-heavy nuclei

⦿ In light/medium-mass nuclei the most promising candidate is 34Si

[Dechargé et al. 2003]

[Todd-Rutel et al. 2004, Khan et al. 2008, …]

34Si36S
d5/2

s1/2

d3/2

ρch

r

The case of 34Si



The case of 34Si

⦿ Mild central depletion predicted

[Duguet et al. 2017]

4

E [MeV] ADC(1) ADC(2) ADC(3) Experiment
34Si -84.481 -274.626 -282.938 -283.427
36S -90.007 -296.060 -305.767 -308.714

TABLE I. Experimental [39] and theoretical binding energies
(in MeV).

hr2chi1/2 [fm] ADC(1) ADC(2) ADC(3) Experiment
34Si 3.287 3.206 3.204 -
36S 3.411 3.308 3.302 3.2985 ± 0.0024

TABLE II. Experimental [39] and theoretical binding energies
(in MeV).

consistent with missing ADC(3) correlations and the in-
trinsic uncertainty of the input Hamiltonian [23, 31]. Go-
ing to ADC(3) indeed brings about 8-10 MeV additional
binding, which represents about 5% of the correlation en-
ergy generated at the ADC(2) level. Extrapolating the
pattern of reduction in the correlation energy added at
each ADC(n) order, the ADC(3) results can be safely
believed to be about 1-2 MeV (i.e. less than 1%) away
from the fully converged values. With the presently used
NNLOsat Hamiltonian, this happens to be of the order
of the di↵erence to experimental data.

C. Convergence of ground-state radii

Before addressing point-nucleon and charge density
distributions, let us focus on the integrated informa-
tion constituted by point-nucleon and charge root-mean-
square (rms) radii. In Fig. 2, the charge rms radius
hr

2
chi

1/2 of 34Si is displayed for di↵erent values of ~! and
Nmax at the ADC(2) level. As Nmax increases, the de-
pendence on ~! becomes weaker, totalling to about 2%
for Nmax = 13 for ~! 2 [16, 24]MeV.

Point-proton, point-neutron, matter and charge radii
computed at the ADC(3) level are reported in Tab. III.
Additionally, theoretical and experimental charge radii of
36S are compared in Tab. IV. It is currently a challenge
for ab initio calculations to describe both the binding
energy and the size of medium-mass nuclei at the same
time [31]. This situation lead recently to the construc-
tion of the (unconventional) NNLOsat �EFT Hamilto-
nian [23] that is presently used and that indeed improves
the situation significantly [31, 41]. The computed value

hr2pi1/2 hr2ni1/2 hr2mi1/2 hr2chi1/2
34Si 3.085 3.258 3.188 3.204
36S 3.184 3.285 3.240 3.302

TABLE III. Theoretical point-proton, point-neutron, matter
and charge rms radii (in fm) calculated from Dyson SCGF at
the ADC(3) level.

hr2chi1/2 Theory Experiment
34Si 3.204 -
36S 3.302 3.2985 ± 0.0024

TABLE IV. Experimental [40] and theoretical charge radii (in
fm).
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FIG. 2. (Color online) ADC(2) ground-state rms charge ra-
dius of 34Si as a function of the harmonic oscillator spacing
~! and for increasing size Nmax of the single-particle model
space.

hr
2
chi

1/2 = 3.302 fm in 36S is in good agreement with ex-
perimental data. Comparatively, the rms charge radius
computed from the EM Hamiltonian processed through
a SRG transformation is significantly too small, e.g. it is
predicted to be hr

2
chi

1/2 = 2.886 fm at the ADC(2) level
for � = 1.88 fm�1.

Experimental charge radii are unavailable for the un-
stable 34Si nucleus. While charge radii for stable iso-
topes can be measured by means of electron scattering,
laser spectroscopy experiments, e.g. at CRIS@ISOLDE,
currently constitutes the most appropriate way to access
charge radii of unstable nuclei with lifetimes as low as a
few milliseconds. However, Si elements have a high evap-
oration temperature and are thus extremely di�cult to
produce via ISOL techniques. Even if evaporated, they
are very reactive and can form molecules easily, which
make it highly challenging to separate the ion (Si+) to
be able to perform laser spectroscopy. In-flight facilities
such as GANIL, NSCL, RIKEN or GSI should be able
to produce high-intensity beams of Si isotopes in the fu-
ture. Once laser spectroscopy capabilities are developed,
these facilities should be in position to measure the rms
charge radius of 34Si. However, the isotope shifts in light
nuclei being very small, (very) high-resolution and high-
precision laser spectroscopy will be required [42].

4

E ADC(1) ADC(2) ADC(3) Experiment
34Si -84.481 -274.626 -282.938 -283.427
36S -90.007 -296.060 -305.767 -308.714

TABLE I. Ground-state energies (in MeV) computed within
ADC(1), ADC(2) and ADC(3) approximations. Experimen-
tal data are from Ref. [44].

long-range, e.g. mean-square radii, operators [43]. As
discussed next, however, in the present case there is lit-
tle impact of the specific value of ~! on density distri-
butions, which constitute the focus of the present paper.
Consequently, and given the lack of a well defined ex-
trapolation procedure for density distributions, the value
~! = 20MeV corresponding to the minimum of the en-
ergy forNmax = 13 is considered in the following sections.

Ground-state energies computed at various orders in
the many-body truncation scheme are compared to ex-
perimental data in Tab. I. At the ADC(2) level, theoret-
ical results are within 4% of experimental data, which is
consistent with missing ADC(3) correlations and the in-
trinsic uncertainty of the input Hamiltonian [28, 36]. Go-
ing to ADC(3) indeed brings about 8-10 MeV additional
binding, which represents about 5% of the correlation en-
ergy generated at the ADC(2) level. Extrapolating the
pattern of reduction in the correlation energy added at
each ADC(n) order, the ADC(3) results can be safely
believed to be about 1-2 MeV (i.e. less than 1%) away
from the fully converged values. With the presently used
NNLOsat Hamiltonian, this happens to be of the order
of the di↵erence to experimental data.

C. Convergence of ground-state radii

Before addressing point-nucleon and charge density
distributions, let us focus on the integrated informa-
tion constituted by point-nucleon and charge root-mean-
square (rms) radii. In Fig. 2, ADC(2) calculations of the
charge rms radius4 hr

2
chi

1/2 of 34Si are displayed for dif-
ferent values of ~! and Nmax. As Nmax increases, the
dependence on ~! becomes weaker, totalling to about
2% for Nmax = 13 for ~! 2 [16, 24]MeV. Table II reports
charge rms radii of 34Si and 36S computed within dif-
ferent many-body truncation schemes. The convergence
pattern is similar for the two nuclei, with tiny di↵erences
between ADC(2) and ADC(3) results. This indicates
that rms radii are essentially converged already at the
ADC(2) level.

4 In the present work charge radii are computed from point-proton
radii by accounting for the finite charge radii of both protons and
neutrons in addition to the Darwin-Foldy correction, see Ref. [45]
for details.
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FIG. 2. (Color online) ADC(2) ground-state rms charge ra-
dius of 34Si as a function of the harmonic oscillator spacing
~! and for increasing size Nmax of the single-particle model
space.

hr2chi1/2 ADC(1) ADC(2) ADC(3) Experiment
34Si 3.270 3.189 3.187 -
36S 3.395 3.291 3.285 3.2985 ± 0.0024

TABLE II. Charge rms radii (in fm) computed within
ADC(1), ADC(2) and ADC(3) approximations. The experi-
mental value is from Ref. [49].

It is currently a challenge for ab initio calculations
to describe both the binding energy and the size of
medium-mass nuclei at the same time [36]. This sit-
uation lead recently to the construction of the (un-
conventional) NNLOsat �EFT Hamiltonian [28] that is
presently used and that indeed improves the situation sig-
nificantly [36, 46]. The computed value hr

2
chi

1/2 = 3.285
fm in 36S is very close to the experimental measurement.
Comparatively, the rms charge radius computed from
the NN+3N400 Hamiltonian processed through a SRG
transformation is significantly too small, e.g. it is pre-
dicted to be hr

2
chi

1/2 = 2.867 fm at the ADC(2) level for
� = 1.88 fm�1.
Experimental charge radii are unavailable for the un-

stable 34Si nucleus. While charge radii for stable iso-
topes can be measured by means of electron scattering,
collinear laser spectroscopy experiments [47] currently
constitute the most appropriate way to access charge
radii of unstable nuclei with lifetimes as low as a few
milliseconds. However, Si elements are highly reactive
and require a high evaporation temperature, thus are ex-
tremely di�cult to produce and extract via ISOL tech-
niques. In-flight facilities, e.g. NSCL at Michigan State
University, are able to provide high-intensity beams of
Si isotopes. Future developments of high-resolution laser
spectroscopy experiments should enable a measure of the
rms charge radius of 34Si [48].
For completeness, point-proton, point-neutron, matter

and charge radii computed at the ADC(3) level are re-

⦿ Good reproduction of g.s. properties
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➪ Charge density computed via folding
 with the finite charge of the proton

➪ Excellent agreement with experimental 
charge distribution of 36S

➪ Folding smears out central depletion 
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FIG. 13. (Color online) Charge and proton densities of 34Si
and 36S at the ADC(3) level. The experimental charge density
of 36S is taken from Ref. [46].

36S ADC(1) ADC(2) ADC(3) Experiment

hr2chi1/2 3.411 3.325 3.302 3.2985 ± 0.0024

TABLE VI. Charge rms radii (in fm) of 36S computed within
ADC(1), ADC(2) and ADC(3) approximations. Experimen-
tal data are from Ref. [40].

current distribution associated with the light charged
mesons they exchange. To first approximation, the nu-
clear charge density is obtained through the folding of the
nuclear point-proton density distribution with the charge
density distribution of the proton. A simple model con-
sists in writing the charge density distribution as [45]

⇢ch(r) =
1

a
p
⇡

+1Z

0

dr
0
r
0
⇢p(r

0)

"
e
�(r�r0)2/a2

r
�

e
�(r+r0)2/a2

r

#
,

(6)
where the gaussian form factor accounting for the proton

size is implemented with a =
p

2/3hr2i1/2p = 0.65 fm.
While this can be improved on in the future, we presently
employ Eq. 6 to analyze the behavior of the observable
charge density distribution.

Theoretical charge density distributions of 34Si and 36S
computed at the ADC(3) level are compared to their
point-proton counterpart in Fig. 13 and to the experi-
mental charge density of 36S [46]. The excellent agree-
ment between theoretical and experimental charge den-
sity distributions of 36S gives confidence in the SCGF
predictions of 34Si obtained from NNLOsat �EFT inter-
actions. While the folding with the charge density dis-
tribution of the proton weakly reduces the peak at the
center of the density distribution of 36S, it significantly
smears out the depletion in the point-proton density dis-

tribution of 34Si. This e↵ect could be expected given
that the folding takes place over a typical distance ofp
2/3hr2i1/2p = 0.65 fm that is consistent with the size

of the proton bubble. The fact that the bubble structure
could be strongly suppressed in the observable charge
density of 34Si was already pointed out on the basis of
SR- and MR-EDF calculations [7, 8]. This strongly re-
flects in the value of the F factor of 34Si that goes down
from 0.34 to 0.19 when going from the point-proton to
the charge density distribution (see Tab. X).

E. Form factor

Accessing the charge density distribution of 34Si would
require to scatter electrons on radioactive ions. This
would lead to measuring the electromagnetic charge form
factor, which relates to the nuclear charge density distri-
bution via

F (q) =

Z
d~r⇢ch(r)e

�i~q·~r
, (7)

where ~q is the transferred momentum, itself related to
the incident momentum ~p and the scattering angle ✓ via
q = 2p sin ✓/2.

In Ref. [5], simulated densities were used to demon-
strate that the di↵raction pattern of a semi-bubble nu-
cleus di↵ers significantly from the one of the same nucleus
without a bubble. Similarly, Fig. 14 displays the angular
dependence of the form factor obtained at the ADC(2)
and ADC(3) levels for 300 MeV electron scattering on
34Si and 36S. From 50 to 100 degrees, the angular distri-
bution is located at higher magnitude in 34Si than in 36S.
This leads to a shift of about 20 degrees between both
second minima such that the two angular distributions
are out of phase at about 110 degrees. Furthermore, the
comparison between ADC(2) and ADC(3) results demon-
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FIG. 14. (Color online) Angular dependence of the form fac-
tor obtained for 300 MeV electron scattering on 34Si and 36S.
Results from both ADC(2) and ADC(3) calculations are dis-
played.
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FIG. 13. (Color online) Charge and proton densities of 34Si
and 36S at the ADC(3) level. The experimental charge density
of 36S is taken from Ref. [46].

36S ADC(1) ADC(2) ADC(3) Experiment

hr2chi1/2 3.411 3.325 3.302 3.2985 ± 0.0024

TABLE VI. Charge rms radii (in fm) of 36S computed within
ADC(1), ADC(2) and ADC(3) approximations. Experimen-
tal data are from Ref. [40].

current distribution associated with the light charged
mesons they exchange. To first approximation, the nu-
clear charge density is obtained through the folding of the
nuclear point-proton density distribution with the charge
density distribution of the proton. A simple model con-
sists in writing the charge density distribution as [45]

⇢ch(r) =
1

a
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⇡
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(6)
where the gaussian form factor accounting for the proton

size is implemented with a =
p

2/3hr2i1/2p = 0.65 fm.
While this can be improved on in the future, we presently
employ Eq. 6 to analyze the behavior of the observable
charge density distribution.

Theoretical charge density distributions of 34Si and 36S
computed at the ADC(3) level are compared to their
point-proton counterpart in Fig. 13 and to the experi-
mental charge density of 36S [46]. The excellent agree-
ment between theoretical and experimental charge den-
sity distributions of 36S gives confidence in the SCGF
predictions of 34Si obtained from NNLOsat �EFT inter-
actions. While the folding with the charge density dis-
tribution of the proton weakly reduces the peak at the
center of the density distribution of 36S, it significantly
smears out the depletion in the point-proton density dis-

tribution of 34Si. This e↵ect could be expected given
that the folding takes place over a typical distance ofp
2/3hr2i1/2p = 0.65 fm that is consistent with the size

of the proton bubble. The fact that the bubble structure
could be strongly suppressed in the observable charge
density of 34Si was already pointed out on the basis of
SR- and MR-EDF calculations [7, 8]. This strongly re-
flects in the value of the F factor of 34Si that goes down
from 0.34 to 0.19 when going from the point-proton to
the charge density distribution (see Tab. X).

E. Form factor

Accessing the charge density distribution of 34Si would
require to scatter electrons on radioactive ions. This
would lead to measuring the electromagnetic charge form
factor, which relates to the nuclear charge density distri-
bution via

F (q) =

Z
d~r⇢ch(r)e

�i~q·~r
, (7)

where ~q is the transferred momentum, itself related to
the incident momentum ~p and the scattering angle ✓ via
q = 2p sin ✓/2.

In Ref. [5], simulated densities were used to demon-
strate that the di↵raction pattern of a semi-bubble nu-
cleus di↵ers significantly from the one of the same nucleus
without a bubble. Similarly, Fig. 14 displays the angular
dependence of the form factor obtained at the ADC(2)
and ADC(3) levels for 300 MeV electron scattering on
34Si and 36S. From 50 to 100 degrees, the angular distri-
bution is located at higher magnitude in 34Si than in 36S.
This leads to a shift of about 20 degrees between both
second minima such that the two angular distributions
are out of phase at about 110 degrees. Furthermore, the
comparison between ADC(2) and ADC(3) results demon-
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FIG. 14. (Color online) Angular dependence of the form fac-
tor obtained for 300 MeV electron scattering on 34Si and 36S.
Results from both ADC(2) and ADC(3) calculations are dis-
played.

⦿ Charge form factor measured in (e,e) experiments sensitive to bubble structure?

E = 300 MeV

and

○ Central depletion reflects in larger F(𝜃) for angles 𝜃>70° and shifted 2nd minimum

○ Future electron scattering experiments might be able to see its fingerprints

The case of 34Si
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⦿ Addition and removal spectra compared to transfer and knock-out reactions

One-neutron addition One-proton knock-out

[Burgunder et al. 2014]

[Thorn et al. 1984]
[Eckle et al. 1989]Exp. data:

[Mutschler et al. 2016 (Nature Phys.)]

[Khan et al. 1985]
[Mutschler et al. 2016 (PRC)]Exp. data:

○ Good agreement for one-neutron addition, to a lesser extent for one-proton removal

○ Reduction of E1/2- - E3/2- spin-orbit splitting (unique in the nuclear chart!) well reproduced

The case of 34Si



⦿ Correlation between bubble structure and reduction of spin-orbit splitting?

○ Different Hs lead to very different depletions

○ Radius difference also correlates with Fch

○ Lower reduction of s.o. splitting

Separation energies

Effective single-particle energies

Charge radius difference (36S-34Si)
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○ Calculations support existence of a correlation

○ Linear correlation holds also for ESPEs

○ Motivation for measuring 34Si radius

The case of 34Si



N3LO NN + 3N (LNL) interaction

48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78
-700

-650

-600

-550

-500

-450

-400

-350 Exp.
Extr. data
N3LO
N3LOlnl
NNLOsat

ANi

E 
[M

eV
]

⦿ Is NNLOsat the end of the story?

○ Description of NN phase shifts and light nuclei 

○ Issues with symmetry energy? Spectra of medium-mass nuclei?

○ Technical issues (strong 3N, SRG induces substantial 4N forces)

⦿ Novel version of the ‘standard’ N3LO interaction

[Navrátil 2018]○ “Local/nonlocal” (LNL) regulators

○ Improves on overbinding and spectra

○ However, radii still slightly underestimated
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[Somà, et al. in preparation]
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Systematics in mid-mass nuclei
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⦿ Systematic investigation of Z=18-24 region

○ N=20 gap overestimated, good performance for N>28

○ Weak pairing in N=20-28, good reproduction in N=28-34



Spectroscopic factors

4

Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through

S(z) ⌘
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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Spectral representation

spectroscopic factors

4

Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors

SF
+
µ

⌘ TrH1

⇥
S+
µ

⇤
=

X

a2H1

��Ua

µ

��2 (45a)

SF
�

⌫
⌘ TrH1

⇥
S�

⌫

⇤
=

X

a2H1

|V a

⌫
|2 (45b)

which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
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⦿ Combine numerator and denominator of Lehmann representation
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Spectral representation

spectroscopic factors
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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⦿ Combine numerator and denominator of Lehmann representation
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Spectral representation

Separation energies
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Spectral strength distribution
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.
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Spectral representation



⦿ Clean connection to (e,e’p) experiments

Target (A-body)
(A-1)-body
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Results from (e,e’p) on 16O (ALS in Saclay)
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FIG. 9. (Color online) Diagonal part of the complete pro-
ton spectral function, Eq. (A1), for closed subshell isotopes
14,16,22,24,28O. The discretised energy peaks that appear as
energy delta functions in Eq. (3) have been smeared with
Lorentzians of suitable with. Energies below the Fermi sur-
face, EF , correspond to the hole part of the spectral distri-
bution while those above are for particle addition. The part
for ! > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 10. (Color online) Same as Fig. 9 but for neutrons.

bility of adding a nucleon with quantum numbers ↵ to the
A-body ground state, | A

0
i, and then to find the system

in a final state with energy EA+1 = EA
0
+ !. Likewise,

Sh
↵↵(!) gives the probability of removing a particle from

state ↵ and later finding the nucleus in an eigenfunction
of energy EA�1 = EA

0
� !. Once transformed to coor-

dinate or momentum representations, these distributions

[Cipollone et al. 2015]

SCGF calculations

Spectral strength in experiments

q

○ Measuring q and p gives information on pm

○ Similarly for missing energy Em

○ Spectral strength distribution ⇿  P(pm, Em)

⦿ Spectroscopy via knockout/transfer exp.



Spectral strength distribution

⦿ 34Si neutron addition & removal strength

ADC(1)

○ Independent-particle picture
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Spectral strength distribution

ADC(2)

○ Second-order dynamical correlations fragment IP peaks
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Spectral strength distribution

ADC(3)

○ Third-order compresses the spectrum (main peaks)
○ Further fragmentation is generated
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K spectra

[Papuga et al. 2013]

J. PAPUGA et al. PHYSICAL REVIEW C 90, 034321 (2014)

FIG. 1. (Color online) Experimental energies for 1/2+ and 3/2+

states in odd-A K isotopes. Inversion of the nuclear spin is obtained in
47,49K and reinversion back in 51K. Results are taken from [16,23–25].
Ground-state spin for 49K and 51K were established [22].

of the orbitals is driven by the monopole part of the proton-
neutron interaction, which can be decomposed into three com-
ponents: the central, vector, and tensor. Initially Otsuka et al.
[12] suggested that the evolution of the ESPEs is mainly due to
the tensor component. However, in more recent publications
[11,13,14] several authors have shown that both the tensor
term as well as the central term have to be considered.

Regarding the shell model, potassium isotopes are excellent
probes for this study, with only one proton less than the magic
number Z = 20. Nevertheless, little and especially conflicting
information is available so far for the neutron-rich potassium
isotopes. Level schemes based on the tentatively assigned spins
of the ground state were provided for 48K [15] and 49K [16]. In
addition, an extensive discussion was presented by Gaudefroy
[17] on the energy levels and configurations of N = 27,28,
and 29 isotones in the shell-model framework and compared
to the experimental observation, where available. However, the
predicted spin of 2− for 48K, is in contradiction with Iπ = (1−)
proposed by Królas et al. [15]. In addition, the nuclear spin of
the ground state of 50K was proposed to be 0− [18] in contrast
to the recent β-decay studies where it was suggested to be
1− [19]. The ground state spin-parity of 49K was tentatively
assigned to be (1/2+) by Broda et al. [16], contrary to the
earlier tentative (3/2+) assignment from β-decay spectroscopy
[20]. For 51K, the nuclear spin was tentatively assigned to be
(3/2+) by Perrot et al. [21].

Our recent hyperfine structure measurements of potassium
isotopes using the collinear laser spectroscopy technique
provided unambiguous spin values for 48–51K and gave the
answer to the question as to what happens with the proton sd
orbitals for isotopes beyond N = 28. By measuring the nuclear
spins of 49K and 51K to be 1/2 and 3/2 [22], respectively,
the evolution of these two states in the potassium isotopes
is firmly established. This is presented in Fig. 1 for isotopes
from N = 18 up to N = 32 where the inversion of the states
is observed at N = 28 followed by the reinversion back at
N = 32. In addition, we have confirmed a spin-parity 1− for
48K and 0− for 50K [26]. The measured magnetic moments
of 48–51K were not discussed in detail so far and will be
presented in this article. Additionally, based on the comparison
between experimental data and shell-model calculations, the
configuration of the ground-state wave functions will be

FIG. 2. (Color online) Schematic representation of the setup for
collinear laser spectroscopy at ISOLDE.

addressed as well. Finally, ab initio Gorkov-Green’s function
calculations of the odd-A isotopes will be discussed.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear laser
spectroscopy beam line COLLAPS [27] at ISOLDE/CERN.
The radioactive ion beam was produced by 1.4-GeV protons
(beam current about 1.7 µA) impinging on a thick UCx target
(45 g/cm2). Ionization of the resulting fragments was achieved
by the surface ion source. The target and the ionizing tube
were heated to around 2000 ◦C. The accelerated ions (up to
40 kV) were mass separated by the high resolution separator
(HRS). The gas-filled Paul trap (ISCOOL) [28,29] was used
for cooling and bunching of the ions. Multiple bunches spaced
by 90 ms were generated after each proton pulse. The bunched
ions were guided to the setup for collinear laser spectroscopy
where they were superimposed with the laser. A schematic
representation of the beam line for collinear laser spectroscopy
is shown in Fig. 2.

A cw titanium:sapphire (Ti:Sa) laser was operated close
to the Doppler-shifted 4s 2S1/2 → 4p 2P1/2 transition at
769.9 nm, providing around 1 mW power into the beam
line. Stabilization of the laser system during the experiment
was ensured by locking the laser to a reference Fabry-Perot
interferometer maintained under vacuum, which in turn was
locked to a frequency stabilized helium-neon (HeNe) laser.
An applied voltage of ±10 kV on the charge exchange cell
(CEC) provided the Doppler tuning for the ions, which
were neutralized through the collisions with potassium vapor.
Scanning of the hyperfine structure (hfs) was performed by
applying an additional voltage in a range of ±500 V. The
resonance photons were recorded by four photomultiplier
tubes (PMT) placed immediately after the CEC. By gating
the signal on the PMTs to the fluorescence photons from the
bunches, the signal was only recorded for about 6 µs when
the bunches were in front of the PMTs. Consequently, the
background related to the scattered laser light was suppressed
by a factor ∼104 (6 µs/90 ms). More details about the setup
can be found in Ref. [26].

III. RESULTS

In Fig. 3 typical hyperfine spectra for 48–51K are shown.
The raw data are saved as counts versus scanning voltage. The
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⦿ Computed σ from RPA response vs. σ from photoabsorption and Coulomb excitation

○ GDR position of 16O well reproduced

○ Hint of a soft dipole mode in 22O
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                      Results for Oxygen isotopes 

•  GDR position of 16O reproduced
•  Hint of a soft dipole mode on the neutron-rich isotope

NNLOsat

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

○ Comparison with CC LIT results for αD

Electromagnetic response

[Raimondi et al. in preparation]



⦿ Computed σ from RPA response vs. σ from photoabsorption and Coulomb excitation

○ GDR positions reproduced

○ Total sum rule OK but poor strength distribution

                     Results for Calcium isotopes 

•  GDR positions reproduced
•  Total sum rule reproduced but poor strength distribution (Lack of correlations)

NNLOsat

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

○ Comparison with CC LIT results for αD

Electromagnetic response

[Raimondi et al. in preparation]



⦿ Comparison with coupled-cluster Lorentz integral transform (CC-LIT)

Comparison with CC-LIT  
(Couple Cluster- Lorentz Integral Transform method)

•  CC-Singles-Doubles (analogous to 2nd RPA)
•  LIT reduces a continuum state problem to a bound-state-like problem

In collaboration with M. Miorelli and S. Bacca (TRIUMF, University of Mainz) 
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Comparison with CC-LIT  
(Couple Cluster- Lorentz Integral Transform method)

•  CC-Singles-Doubles (analogous to 2nd RPA)
•  LIT reduces a continuum state problem to a bound-state-like problem

In collaboration with M. Miorelli and S. Bacca (TRIUMF, University of Mainz) 
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Different treatment of the correlations:
SCGF

Reference state correlated
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Singles-Doubles

○ Different ways of including correlations

GF  ➝  RPA (first-order 2-body correlator) on top of fully correlated reference state 

CC ➝   SD (analogous to second RPA) on top of HF reference state

Electromagnetic response

[Raimondi et al. in preparation]



BMBPT

Bogolyubov many-body perturbation theory
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⦿ MBPT generalised to open-shell nuclei

○ As accurate as non-perturbative methods for soft H

○ Scaling is very favourable

○ Promising tool for diagnostic

[Tichai, Arthuis, et al. (in preparation)]



⦿ Many-body formalism well grounded

○ ChEFT is undergoing intense development, facing fundamental & practical issues

⦿ At present, interactions constitute main source of uncertainty

○ Pragmatic strategy: interaction performs well over good range of nuclei & observables

⦿ Extension of ab initio simulations to heavy nuclei

○ Mid-mass region of the nuclear chart being scrutinised

○ Computational challenges ahead: work in progress and more smart ideas needed

Conclusions

○ Closed- & open-shell nuclei, g.s. observables & spectroscopy, …

○ Two-body propagators to be implemented to access spectroscopy of even-even systems


