Recent progress and open questions in ab initio simulations of nuclei

Vittorio Somà IRFU, CEA Saclay, France

Padova 5 June 2018

Acknowledgements

Pierre Arthuis
Mehdi Drissi
Thomas Duguet
Alexander Tichai

Carlo Barbieri
Francesco Raimondi
Arnau Rios

Petr Navrátil

Ab initio vs. effective approach

Evolution of ab initio nuclear chart

Self-consistent Green's function approach

• Solution of the A-body Schrödinger equation $H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$ achieved by

- 1) Rewriting it in terms of 1-, 2-, A-body objects $G_1=G$, G_2 , ... G_A (Green's functions)
- 2) Expanding these objects in perturbation (in practise **G** → **one-body observables**, etc..)
- **Self-consistent** schemes resum (infinite) subsets of perturbation-theory contributions

• Access a variety of quantities

- \circ One-body GF \rightarrow Ground-state properties of even-even *A* + spectra of odd-even neighbours
- \circ Two-body GF \rightarrow Excited spectrum of even-even *A*
- Self-energy → Optical potential for nucleon-nucleus scattering

Chiral effective field theory & nuclear interactions

➡ Ideally: apply to the many-nucleon system (and propagate the theoretical error)

N3LO NN + 3N (400) interaction

NNLO_{sat} interaction

• Development of a new ChEFT-inspired Hamiltonian: NNLO_{sat}

Simultaneous fit of low-energy constants in 2- and 3-body sectors
Data from light nuclei included in fit of low-energy constants

	$E_{g.s.}$	Expt. [69]	r _{ch}	Expt. [65,66]
³ H	8.52	8.482	1.78	1.7591(363)
³ He	7.76	7.718	1.99	1.9661(30)
⁴ He	28.43	28.296	1.70	1.6755(28)
^{14}C	103.6	105.285	2.48	2.5025(87)
¹⁶ O	124.4	127.619	2.71	2.6991(52)
^{22}O	160.8	162.028(57)		
²⁴ O	168.1	168.96(12)		
²⁵ O	167.4	168.18(10)		

• Generated debate in the community

• Is it really ab initio?

[Ekström et al. 2015]

- \circ What about associated (EFT) uncertainties?
- How should we fix the parameters of the interaction?
- Optimistic view: NNLO_{sat} indicates that ChEFT strategy is feasible

The case of ³⁴Si

 \odot Unconventional depletion ("bubble") in the centre of ρ_{ch} conjectured for certain nuclei

• Purely quantum mechanical effect

- \circ ℓ = 0 orbitals display radial distribution peaked at *r* = 0
- \circ *ℓ* ≠ 0 orbitals are instead suppressed at small *r*
- \circ Vacancy of *s* states ($\ell = 0$) embedded in larger- ℓ orbitals might cause central depletion

Conjectured associated effect on spin-orbit splitting

- Non-zero derivative at the interior
- Spin-orbit potential of "non-natural" sign

- \circ Reduction of (energy) splitting of low- ℓ spin-orbit partners
- Bubbles predicted for hyper-heavy nuclei [Dechargé *et al.* 2003]

● In light/medium-mass nuclei the most promising candidate is ³⁴Si

[Todd-Rutel et al. 2004, Khan et al. 2008, ...]

The case of ³⁴Si

• Good reproduction of g.s. properties

$E [{\rm MeV}]$	ADC(1)	ADC(2)	ADC(3)	Experiment
³⁴ Si	-84.481	-274.626	-282.938	-283.427
$^{36}\mathrm{S}$	-90.007	-296.060	-305.767	-308.714

$\langle r_{\rm ch}^2 \rangle^{1/2}$	ADC(1)	ADC(2)	ADC(3)	Experiment
³⁴ Si	3.270	3.189	3.187	-
^{36}S	3.395	3.291	3.285	3.2985 ± 0.0024

• Mild central depletion predicted

[Duguet et al. 2017]

• Charge form factor measured in (e,e) experiments sensitive to bubble structure?

$$F(q) = \int d\vec{r}\rho_{\rm ch}(r)e^{-i\vec{q}\cdot\vec{r}} \quad \text{and} \quad q = 2p\sin\theta/2$$

The case of ³⁴Si

• Addition and removal spectra compared to transfer and knock-out reactions

• Good agreement for one-neutron addition, to a lesser extent for one-proton removal

• Reduction of E_{1/2}- - E_{3/2}- spin-orbit splitting (unique in the nuclear chart!) well reproduced

The case of ³⁴Si

• **Correlation** between bubble structure and reduction of spin-orbit splitting?

Separation energies

- \circ Different Hs lead to very different depletions
- Calculations support existence of a correlation

Effective single-particle energies Lower reduction of s.o. splitting Linear correlation holds also for ESPEs

Charge radius difference (³⁶S-³⁴Si)

- \circ Radius difference also correlates with F_{ch}
- Motivation for measuring ³⁴Si radius

N3LO NN + 3N (LNL) interaction

• Is NNLO_{sat} the end of the story?

- Description of *NN* phase shifts and light nuclei
- Issues with symmetry energy? Spectra of medium-mass nuclei?
- Technical issues (strong 3N, SRG induces substantial 4N forces)

• Novel version of the 'standard' N3LO interaction

- "Local/nonlocal" (LNL) regulators [Navrátil 2018]
- Improves on overbinding and spectra

• However, radii still slightly underestimated

[Somà, et al. in preparation]

Exp.

Extr. data N3LO

N3LOlnl

NNLOsat

• Systematic investigation of Z=18-24 region

- *N*=20 gap overestimated, good performance for *N*>28
- Weak pairing in *N*=20-28, good reproduction in *N*=28-34

[Somà, *et al.* in preparation]

 $G_{ab}(z) = \sum_{\mu} \frac{\langle \Psi_{0}^{N} | a_{a} | \Psi_{\mu}^{N+1} \rangle \langle \Psi_{\mu}^{N} | \Psi_{\kappa}^{N} a_{b}^{\dagger} \rangle \Psi_{0}^{N} \rangle}{G_{ab}(z) = \sum_{\mu} \frac{z \, U_{a}^{\mu} (\Psi_{\mu}^{\mu})^{*} i \eta}{z - E_{\mu}^{+} + i \eta} + \sum_{\nu} \frac{\langle \Psi_{a}^{N} | \nu_{\nu}^{N} \rangle}{z - E_{\nu}^{-} - i \eta} \left| \begin{array}{c} z - E_{\nu}^{-} - i \eta \\ z - E_{\nu}^{-} - i \eta \\ \frac{\langle \Psi_{0}^{N} | a_{a} | \Psi_{\mu}^{N+1} \rangle \langle \Psi_{\mu}^{N+1} | a_{b}^{\dagger} | \Psi_{0}^{N} \rangle_{\mu}}{G_{ab}(E_{\mu}^{\dagger} + \sum_{\mu} \frac{U_{a}^{a} (U_{b}^{\dagger})^{*} \sum_{\nu} \langle \Psi_{0}^{N} | a_{b}^{\dagger} | \Psi_{\nu}^{N-1} \rangle \langle \Psi_{\nu}^{N-1} | a_{a} | \Psi_{0}^{N} \rangle}{z - E_{\nu}^{-} - i \eta} \right|$ paration energies Spectral strength distribution Separation energies $\frac{E_{\mu}^{+}}{E_{\mu}^{-}} = \frac{E_{\mu}^{A+1}}{E_{\nu}^{A}} - \frac{E_{\nu}^{A}}{E_{\nu}^{A-1}} A$ $\frac{\int_{a}^{\mu} (U_{b}^{\nu})^{*} \frac{1}{\alpha_{b}}}{|E^{E_{\mu}} + i\eta_{\mu \in \mathcal{H}_{A}} + \frac{1}{2} \sum_{\mu \in \mathcal{H}_{\mu}} \frac{(V_{\nu}^{\nu})^{*} V_{\nu}^{\nu}}{|E^{E_{\mu}} - i\eta_{\mu}|} \Psi_{0}^{N} \sum_{\nu \in \mathcal{H}_{A-1}} SF_{\nu}^{-} \delta(z - E_{\nu}^{-})$ A+1 E_{ν}^{A-1} Binding energy E_{ν}^{-} $\frac{|a_{a}|\Psi_{\mu}^{N+1}}{U_{\mu}^{b}} = \frac{|\Psi_{\mu}^{N+1}}{z} \langle \Psi_{E}^{N} | q_{E_{k}^{\pm}} | \Psi_{\mu}^{N+1} \rangle$ E_0^A e_p^{cent} -Centroids E^+_μ E^{A+1}_{μ} ne-body Hilbert space \mathcal{H}_1 provides spectroscopic factors $V_{\nu}^{b} \equiv \langle \Psi_{0}^{N} | a_{b}^{\dagger} | \Psi_{\nu}^{N-1} \rangle = \sum_{\mu \neq \mu} \sum_{\mu \neq \mu} | \Psi_{\mu}^{N} | \Xi_{\mu}^{\dagger} | \Psi_{\nu}^{N-1} \rangle = \sum_{\mu \neq \mu} \sum_{\mu \neq \mu} | U_{\mu}^{a} |_{U_{\mu}}^{2} | \Psi_{\mu}^{a} |_{U_{\mu}}^{2} |_{U_{\mu}}^{2} | \Psi_{\mu}^{a} |_{U_{\mu}}^{2} |_{U$ one-body Hilbert space \mathcal{H}_{1} provides spectroscopic factors $G_{ab}(z) = \langle \Psi_{\mu}^{N} G_{\mu}^{\nu} | = SF_{\mu}^{\nu} = G_{\mu}^{\nu} | = G_{\mu}^{\nu}$ E_{μ}^{A+1}

Rindina anaraw

Spectral strength in experiments

• Clean connection to (e,e'p) experiments

○ Measuring q and p gives information on p_m
○ Similarly for missing energy E_m
○ Spectral strength distribution ↔ P(p_m, E_m)

• Spectroscopy via knockout/transfer exp.

Spectral strength distribution

● ³⁴Si neutron addition & removal strength

ADC(1)

 \circ Independent-particle picture

Spectral strength distribution

ADC(2)

● ³⁴Si neutron addition & removal strength

• Second-order dynamical correlations fragment IP peaks

Spectral strength distribution

ADC(3)

● ³⁴Si neutron addition & removal strength

• Third-order compresses the spectrum (main peaks)

• Further fragmentation is generated

K spectra

Laser spectroscopy COLLAPS @ ISOLDE ⁵¹Sc ⁴⁹K 0.1 0.01 **- -** 1/2⁺ **-** 3/2⁺ 2522 0.1 Energy (keV) [Papuga et al. 2013] 0.01 1371 980 0.1 561 0.01 474 359 92 ⁴⁹K ⁵¹K ${\rm SF}_{\rm k}^\pm$ ⁴⁷K ³⁷K ³⁹K ⁴⁵K ⁴¹K ⁴³K 0.1 0.01 7 0.1 Experiment N3LO 0.01 6 N3LOlnl 5 – NNLOsat E(1/2⁺ - 3/2⁺) [MeV] 0.1 4 0.01 3 -20 -30 -10 -40 10 20 0 2 E_k^{\pm} [MeV] 0 -1 One-proton addition -2 and removal from ⁵⁰Ca 39 45 37 41 43 47 49 51 53 55 AK

K spectra show interesting g.s. spin inversion and re-inversion

Electromagnetic response

 \odot Computed σ from RPA response vs. σ from photoabsorption and Coulomb excitation

120 160 SCGF SCGF 140 Leistneschneider (2001) Ishkhanov (2002) 100 Ahrens 120 120DysADC3_RPA, NNLOsat_bare DysADC3_RPA, NI • Leistneschneider (Ahrens 1 (1975) $\sigma(\mathbf{E}_X)$ [mb] 140 100 16**(** 100• • Ahrens 2 (1975) 120 80 160 $\sigma(\mathbf{E}_X) \ [\mathbf{mb}]$ $N_{max}=13, \hbar\omega=20$ $\sigma(\mathbf{E}_X)$ [mb] $\alpha_D = 0.7242$ $N_{max}=13, \hbar\omega=20 \text{ MeV}$ 60 $\alpha_D = 0.499596 fm^3$ 40 20 0 3 \mathbf{E}_{X}^{30} [MeV] \mathbf{E}_X [MeV] 70 20 30 60 10 40 50 \mathbf{E}_X [wiev] \mathbf{E}_{X} [MeV]

[Raimondi et al. in preparation]

 \circ GDR position of ^{16}O well reproduced

- \circ Hint of a soft dipole mode in ^{22}O
- \circ Comparison with CC LIT results for α_D

Dipol	le polariz	ability α_D	(fm^3)
Nucleus	SCGF	CC/LIT	Exp
¹⁶ O	0.50	0.57(1)	0.585(9)
^{22}O	0.72	0.86(4)	0.43(4)

Electromagnetic response

 \odot Computed σ from RPA response vs. σ from photoabsorption and Coulomb excitation

 \circ GDR positions reproduced

- Total sum rule OK but poor strength distribution
- \circ Comparison with CC LIT results for α_D

Dipole polarizability α_D (fm ³)				
Nucleus	SCGF	$\rm CC/LIT$	Exp	
40 Ca	1.79	$1.47 \ (1.87)_{thresh}$	1.87(3)	
⁴⁸ Ca	2.08	2.45	2.07(22)	

Electromagnetic response

• Comparison with coupled-cluster Lorentz integral transform (CC-LIT)

[Raimondi et al. in preparation]

Different ways of including correlations

- $GF \rightarrow RPA$ (first-order 2-body correlator) on top of fully correlated reference state
- $CC \rightarrow SD$ (analogous to second RPA) on top of HF reference state

Bogolyubov many-body perturbation theory

Conclusions

• Many-body formalism well grounded

- Closed- & open-shell nuclei, g.s. observables & spectroscopy, ...
- Two-body propagators to be implemented to access spectroscopy of even-even systems

• At present, interactions constitute main source of uncertainty

- ChEFT is undergoing intense development, facing fundamental & practical issues
- *Pragmatic* strategy: interaction performs well over good range of nuclei & observables

• Extension of ab initio simulations to heavy nuclei

- Mid-mass region of the nuclear chart being scrutinised
- Computational challenges ahead: work in progress and more smart ideas needed