Search for new physics via baryon EDM at LHC with bent crystals

A. Merli

Università degli Studi di Milano
Milano, 15th May 2020

Electromagnetic dipole moments

$\delta=$ electric dipole moment (EDM) $\quad \mu=$ magnetic dipole moment (MDM)

- Classic systems

$$
\delta=\int r \rho(\boldsymbol{r}) d^{3} r \quad \boldsymbol{\mu}=\int r \times j(\boldsymbol{r}) d^{3} r
$$

- Quantum systems

$$
\boldsymbol{\delta}=d \mu_{N} \frac{\boldsymbol{S}}{2} \quad \boldsymbol{\mu}=g \mu_{N} \frac{\boldsymbol{S}}{2}
$$

- Hamiltonian

$$
H=-\boldsymbol{\delta} \cdot \boldsymbol{E}-\boldsymbol{\mu} \cdot \boldsymbol{B}
$$

Time reversal, Parity:

$$
\begin{array}{ll}
\xrightarrow[\mathrm{P}]{\mathrm{T}} & +\boldsymbol{\delta} \cdot \boldsymbol{E}-\boldsymbol{\mu} \cdot \boldsymbol{B} \\
\xrightarrow{\boldsymbol{\delta}} \cdot \boldsymbol{E}-\boldsymbol{\mu} \cdot \boldsymbol{B}
\end{array}
$$

The EDM violates T and P and via CPT theorem, violates $C P$

Physics motivation for EDM

- CP violation (CPV) is a necessary condition for baryogenesis:
- CPV in weak interactions via CKM mechanism in the SM is too small to explain the absence of antimatter in the Universe
- CPV in strong interactions allowed in
 the SM. Stringent experimental limit from neutron EDM

New CPV sources are expected to exists

EDM as a possible solution for baryogenesis

- EDM of fundamental particles from the structure of quarks and gluons, and processes with photon and flavour-diagonal coupling
- A measurement of a heavy baryon EDM is directly sensitive to:

Charm EDM in Standard Model ~10-32 ecm
Charm EDM in new physics $\sim 10^{-17} \mathrm{ecm}$

EDM observation = clear sign of new physics

Physics motivation for MDM

- Experimental anchor points for tests of low-energy QCD models, related to non-perturbative QCD dynamics
- Test of quark substructure
- Measurement of MDM of particles and antiparticles would allow a test of CPT symmetry

Channeling in bent crystals

- Potential well between crystal planes
- Incident positive charged particle can be trapped if parallel to crystal plane (within few $\mu \mathrm{rad}$)
- Well understood phenomenon (Lindhard 1965)
- Effect of the bent crystals:
- Steer high energy particle beams
- Induce spin precession

Spin precession in bent crystals

- Firstly predicted by Baryshevky (1979)
- Determine particle gyromagnetic factor from TBMT equation
V.L. Lyuboshits, Sov. J. Nucl. Phys. 31 (1980) 509

$$
\Phi=\frac{g-2}{2} \gamma \theta_{C} \begin{aligned}
& \Phi=\text { spin rotation angle } \\
& \begin{array}{l}
\theta_{C} \\
g=\text { crystal bending angle } \sim 10^{-2} \mathrm{rad} \\
\gamma
\end{array} \\
& \gamma=\text { gyromagnetic factor }
\end{aligned}
$$

Fig. 1. Spin rotation in a bent crystal.

- Before decay the baryons experience a huge electric field in the crystal
- MDM and EDM precession in the limit $\gamma \gg 1, d \ll g-2$ EPJC 77 (2017), 181

$$
S_{x}=S_{0} \frac{d}{g-2}(\cos \Phi-1)
$$

Experimental proposal

LHCb detector

Andrea Merli - INFN

Bent crystal manufacturing techniques

- Bending angle of a few mead (3-4 mrad) for 8 cm long Silicon crystal obtained through "anticlastic deformation", but scheme not exploitable for larger bending angles
- Bending angles of 15 mrad requires innovative bending schemes
- R\&D at INFN for both Silicon and Germanium long crystals: achieved large bending angles (16 mrad)

Crystal for extraction
$12 \mathrm{~mm}, 300 \mu \mathrm{rad}$

Long bent crystal prototypes

Crystal material	Si, Ge	
Length along the beam	$7-8 \mathrm{~cm}$ for Si $5-6 \mathrm{~cm}$ for Ge	
Crystal height	$2-5 \mathrm{~mm}$	
Weight	to be determined	
Channeling axis	$<\\| \mathrm{II}\rangle,<1 \mathrm{I} 0>,<100>$	
Miscut for planar	To be determined	
Torsion	<10 urad $/ \mathrm{mm}$	
Bending angle	$16-17 \mathrm{mrad}$	
Dislocation density	$<1 / \mathrm{cm}^{2}$	
Holder material	Titanium grade 5, steel 316 LN, other?	

Si: $8.0 \mathrm{~cm}, 16.0 \mathrm{mrad}, 5 \mathrm{~mm}$ (height) Ge: $5.5 \mathrm{~cm}, 14.7 \mathrm{mrad}, 5 \mathrm{~mm}$ (height)

Courtesy of A. Mazzolari

- Silicon and germanium long bent crystal prototypes

Testbeam at CERN

Deflection angle distribution

- Channeling clearly observed for both silicon and germanium crystals

Machine simulations

- All new devices in the vertical plane. 5 mm long target of W
- Bending angle Cry2=14mrad, length=7cm

Machine simulations

- New collimators downstream of IR8 are quite effective in reducing losses
- Losses checked also for the scenario where crystal lost the angle alignment
- CPV never observed in bar

Protons on Target

- Typical $10^{6} \mathrm{p} / \mathrm{s}$ is feasible, possibility to reach $10^{7} \mathrm{p} / \mathrm{s}$
- 5o line assumes 250 bunches, whereas the other cases are computed for the full machine ~ 2500 bunches

Time during stable beam, assuming typical losses.

Simulation studies

- Tungsten (W) 5mm fixed target + bent crystal positioned at 116 cm before the interaction point

- Use EPOS for fixed target minimum bias events, PYTHIA for baryons produced in pW hard collisions
- Signal reconstruction and background rejection studied using LHCb full simulation

Detector occupancy

- W target size $(10,2,10) \mathrm{mm}$

- Occupancies for fixed-target events under control wrt generic bb events ($\mathrm{v}=7.6$)

Identification of signal events

- About $10^{-4} \Lambda_{c}^{+}$produced in the target are channeled in the bent crystal

LHCb acceptance $\theta_{C} \gtrsim 12 \mathrm{mrad}$

- Use PV to identify Λ_{c}^{+}produced in W target, and Λ_{c}^{+}vertex helps to identify decays outside of the crystal (max spin precession)
- Λ_{c}^{+}angle determined by crystal bending angle, e.g. $\theta_{c}=15 \mathrm{mrad}$
- Channeled baryons have high momentum $\gtrsim 1 \mathrm{TeV} / \mathrm{c}$

Λ_{c}^{+}momentum distribution

Si, L~7cm, $\theta_{c} \sim 14 \mathrm{mrad}$

- At production (top)
- After channeling and p>800 GeV/c

Reconstruction of signal events

- LHCb Upgrade performs well in reconstructing these events
- $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$daughter particles ($\mathrm{p}>300 \mathrm{GeV}$) have reduced momentum resolution >1\%
- Invariant mass resolution 20 MeV is good enough for signal reconstruction and background rejection

- Reconstruction independent on the proton flux

Background rejection

- Rejection of unchanneled Λ_{c}^{+}produced in W target

Channeled particles

Unchanneled particles

- Background rejection 10-7 level and signal efficiency 80\%
- High momentum Λ_{c}^{+}most sensitive for EDM measurements

Synergetic run with LHCb

- Synergetic running with LHCb feasible for small flux < $10^{7} \mathrm{p} / \mathrm{s}$
- Simulated one PV in the target and v=7.6 pp collisions
- The presence of the target doesn't impact the reconstruction of pp events

Sensitivity on EDM

- Technique applies to all short-lived positive baryons
- Possibility to test new physics models

Sensitivity on MDM

- First MDM measurements

Conclusions

- Experimental proposal for unique baryon EDM/MDM measurements in LHCb was presented
- Those searches will extend the new physics discovery potential of LHC
- Synergetic runs with pp collisions feasible

Aknowledgment

- Proponents within LHCb: S. Aiola, J. Fu, L. Henry, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, P. Robbe, J. Ruiz Vidal
- References:
- E. Bagli, L. Bandiera, G. Cavoto, V. Guidi, L. Henry, D. Marangotto, F. Martinez Vidal, A. Mazzolari, A. Merli, N. Neri, J. Ruiz Vidal, Electromagnetic dipole moments of charged baryons with bent crystals at the LHC, arXiv: 1708.08483 (2017), Eur. Phys. J. C 77 (2017) 828.
A.S. Fomin, A.Yu. Korchin, A. Stocchi, O.A. Bezshyyko, L. Burmistrov, S.P. Fomin, I.V. Kirillin, L. Massacrier, A. Natochii, P. Robbe, W. Scandale, N.F. Shul'ga, Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals, JHEP 1708 (2017) 120.
V. G. Baryshevsky, On the search for the electric dipole moment of strange and charm baryons at LHC and parity violating (P) and time reversal (T) invariance violating spin rotation and dichroism in crystal, arXiv:1708.09799 (2017).
L. Henry, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, P. Robbe, J. Ruiz Vidal, CERN- LHCb-INT-2017-011, Proposal to search for baryon EDMs with bent crystals at LHCb.
- F. J. Botella, L. M. Garcia Martin, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, A. Oyanguren, J. Ruiz Vidal, On the search for the electric dipole moment of strange and charm baryons at LHC, Eur. Phys. J. C 77 (2017) 181.
V. G. Baryshevsky, The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals, Phys. Lett. B757 (2016) 426.
L. Burmistrov, G. Calderini, Yu Ivanov, L. Massacrier, P. Robbe, W. Scandale, A. Stocchi, Measurement of short living baryon magnetic moment using bent crystals at SPS and LHC, CERN-SPSC-2016-030; SPSC-EOI-012.

Back-up slides

Channeling efficiency

$$
w\left(\theta_{C}, R\right)=\left(1-\frac{R_{c}}{R}\right)^{2} \exp \left(-\frac{\theta_{C}}{\theta_{D} \frac{R_{c}}{R}\left(1-\frac{R_{c}}{R}\right)^{2}}\right)
$$

Channeling efficiency for $\Lambda_{c^{+}}$ particles within Lindhard angle

Total channelling efficiency: Lindhard angle, dechanneling, $\Lambda_{\mathrm{c}}{ }^{+}$decay flight: $1 \cdot 10^{-5}(\mathrm{Si})$, $4 \cdot 10^{-5}(\mathrm{Ge})$

- Parametrisation from Biryukov, Valery M. (et al.), Crystal Channeling and Its Application at High-Energy Accelerators, Springer Verlag (1997)

Sensitivity to EDM/MDM

- Studies based on:
- $\Lambda_{c}+$ from fixed-target (Pythia + EvtGen)
- Reconstruction, Decay flight efficiency (LHCb simulation)
- Channeling efficiency (parametrization)
- Fit to spin precession (pseudo experiments)

$$
\sigma_{d} \approx \frac{g-2}{\alpha_{f} s_{0}(\cos \Phi-1)} \frac{1}{\sqrt{N_{\Lambda_{c}^{+}}^{\mathrm{reco}}}}
$$

$$
\begin{gathered}
N_{\Lambda_{c}^{+}}^{N_{\text {eco }}^{+}}=N_{\Lambda_{c}^{+}} \mathcal{B}\left(\Lambda_{c}^{+} \rightarrow f\right) \varepsilon_{\mathrm{CH}} \varepsilon_{\mathrm{DF}} \varepsilon_{\mathrm{det}} \\
\\
\sigma\left(p p \rightarrow \Lambda_{c}^{+} X\right) \approx 18.2 \mu \mathrm{~b} \\
\left|S_{0}\right| \approx 0.6
\end{gathered}
$$

$$
\epsilon_{\text {Set }} \approx 20 \% \quad \epsilon_{\mathrm{DF}} \approx 10 \%
$$

$$
\epsilon_{\mathrm{ch}} \approx 10^{-4}
$$

$$
d N
$$

$$
\frac{a N}{d \Omega} \propto 1+\alpha_{f} S \cdot p
$$

$$
\alpha_{\Delta^{++} K^{-}} \approx-0.67
$$

$$
\sigma_{g} \approx \frac{2}{\alpha_{f} s_{0} \gamma \theta_{C}} \frac{1}{\sqrt{N_{\Lambda_{c}^{+}}^{\text {recon }}}}
$$

LHCb acceptance

- Channeled particles with crystals with bending angle < 14/15mrad has low reconstruction efficiency

- Dependence of the reconstruction efficiency over azimuthal angle due to the LHCb detector geometry

Crystal optimisation

- Optimised sensitivity to EDM and MDM
- Channeling and reconstruction efficiency included

- Regions of minimal uncertainty of EDM (continuous line) and MDM (dotted line) defined as +20\% uncertainty wrt the minimum (point marker)

