Background Mixing

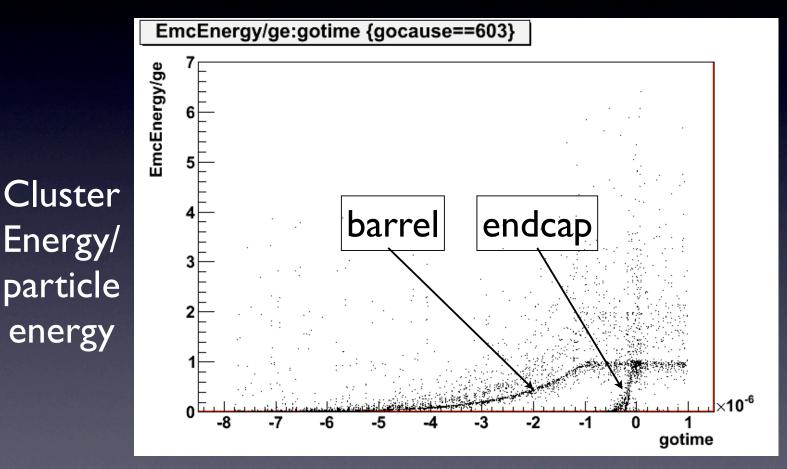
David Brown, LBNL

SuperB FastSim meeting 4 February 2010

FastSim Background Strategy

- Generate backgrounds in standalone jobs
 - Each bkg 'event' = 1 beam crossing
 - Fullsim OR FastSim
- Overlay background particles on physics event
 - 'Indistinguishable' from physics particles
 - Separate origin codes
- Simulate and reconstruct normally
 - hit/cluster merging includes background effects

Background Mixing Code

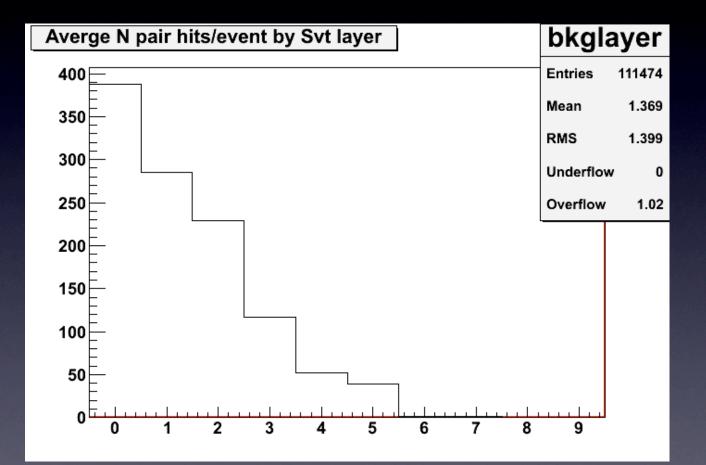

- PmcBkgInput, PmcBGTFromRoot (G. Simi)
 - read root tree of TParticle TClonesArray, convert to PacSimTracks
 - Add beam xings randomly across active time window
 - Beam parameters (luminosity, F_{bx}) and time window set by hand
- PmcWriteParticles
 - Write selected SimTracks as TParticle TClonesArray
 - Particles creating EmcClusters with E>1.0GeV
 - Charged particles which generate tracking hits with Pt > 2MeV
 - Particle origin chosen at relevant PacSimHit
 - Integrate interactions to correspond to 1 beam xing
 - Must input process X-section + beam parameters by hand

Background Generation

- Beam particles from low-angle Rad Bhabhas
 - particles are photons and neutrons from 2ndary Interactions with machine elements near IP
 - Fullsim
- Bhabhas
 - 'ghost' of high-energy Bhabha electron clusters
 - exponential decay
 - FastSim
- e+e- pairs
 - very low-mass pairs hit Svt inner layers
 - FastSim
- Example generation scripts in PacProduction

Emc time response

Bhabha background



Bhabha time WRT physics event (sec)

Very Preliminary Numbers

- $\mathcal{L} = 10^{36} \text{ cm}^{-2}\text{s}^{-1}$, $F_{bx} = 200 \text{ MHz}$
- beam particles (rad Bhabhas)
 - ~0.5 γ E > 10 MeV, ~0.5 n per bx E > 5 MeV
 - few hundred low-energy clusters per physics event
- Bhabhas
 - ~10⁻⁴ electrons in Emc acceptance per bx
 - ~0.1 electrons in active time window per physics event
- e+e- pairs
 - ~2 electrons per bx
 - ~500 electrons at L₀ per physics event

Pair Hits per Svt layer

PacMC Performance for full SuperB background rates

- PmcBkgInput time is negligible
- PmcSimulate time up by factor of 3
- PmcMergeHits time up by factor of 10
- PmcReconstruct up by factor of 3+
 - Grows with # of events read
 - Memory leak + vector not cleared?
- Overall PacProduction is up by ~factor of 2
 - Assumes physics algorithms do not increase in time

Conclusions

- Full suite of background mixing in FastSim now availble
- Some known problems
 - memory leak(?)
- Time windows need to be tuned
 - parameter now present in all measurements
- Official bkg frames will be generated next week
- Preliminary numbers are concerning
 - more tests needed