
Problem at high momenta... 1
Problem at low momenta .. 7

Current code (using p (reco) at the origin) ... 7
Using p(reco) at DCH .. 9
Using p(true) at DCH ...11
Using p(true) at DCH and only the info of first (sim)hit13
Comments..16

Problem at high momenta

Initially the simulation of dE/dx for the single hit was implemented in PacTrk/
PacTrkHitViewDch.cc, and the spread was generated according to a Gaussian without
requiring dedx>0.
Here is the relevant line in PacTrkHitViewDch::getHitInfo(...) in revision 1543:

dedx = RandGauss::shoot(rng,dedx_ave,ededx);
Note that the absence of a requirement "dedx>0" was a feature,not a bug. At some point
the line above was changed to:

dedx = std::max(RandGauss::shoot(rng,dedx_ave,ededx),0.0);
See PacTrkdEdxMeas::get_dedx(...), revision 1714. I think that this cut has been introduced
when the dE/dx of SVT has been implemented.

Why for DCH it's important that the requirement dedx>0 is NOT applied? Because the dE/dx
error of the single hit is such that there is a non-negligible probability that the Gaussian-
generated measurement takes a value<0, but at the same time the probability that the
average over the hits of the track is negative is extremely small, practically zero.
In other words, it is fine if the |dE/dx| measurement of a single hit can be negative,
provided that the |dE/dx| measurement of the track is positive defined.

With dedx = std::max(RandGauss::shoot(rng,dedx_ave,ededx),0.0):

Below: dE/dx pull vs. cos(theta) before the fix (p>0.4 GeV)

Below: dE/dx pull vs. p before the fix (p>0.4 GeV)

With dedx = RandGauss::shoot(rng,dedx_ave,ededx);

Below: dE/dx pull vs cos(theta) after the fix (p>0.4 GeV)

Below: dE/dx pull vs. p after the fix (p>0.4 GeV)

At low momenta there is a bias in the dE/dx pull. Under
investigation:
Below: dE/dx pull vs. p after the fix (p<0.4 GeV). Particles are pions.

Problem at low momenta

Current code (using p (reco) at the origin)

dEdxExpPi computed with reco computed at the origin (current code in SVN)
dE/dx reco computed from (truncated) weighted mean in PacTrunc
Comments: the pull is bad at low p values.

Using p(reco) at DCH

dEdxExpPi computed with p reco computed at the DCH (first DCH hit)
dE/dx reco computed from (truncated) weighted mean in PacTrunc
Comments: the pull is not good at low p values, though it has improved with respect to the
when p is computed at the origin

Using p(true) at DCH

dEdxExpPi computed with p true (1st PacSimHit of DCH)
dE/dx reco computed from (truncated) weighted mean in PacTrunc
Comments: the pull is still not perfect because the true p changes slightly along the track
due to the energy loss. A small bias at positive values is visible at very low momenta.

Using p(true) at DCH and only the info of first (sim)hit

dEdxExpPi computed with p true (1st PacSimHit of DCH)
dE/dx reco computed from Gauss(dEdxExpPi,sigma) where sigma=error_1st_DchHit/
sqrt(nhit)
Comments: the pull is perfect at all p values, including the lowest ones.

Comments

The main reason of the bad shape of the dE/dx pull in FastSim at very low momenta is the
fact that the expected dE/dx is calculated using the reconstructed momentum at the origin,
instead of p at the DCH. Using p at the DCH reduces the bias by at least a factor 3 [see
here].
Even using p at the DCH a small bias of the pull remains. Is it due to the fact that p at the
DCH is not evaluated well enough? No, because the bias remains even when the true p at
the DCH (the p of the first SimHit) is used [see here].
The remaining bias is due to the fact that the particle momentum changes in a non
negligible way within the DCH portion of the track. Therefore if the pull is built from dE/
dx_measured - dE/dx_expected where dE/dx_expected is the value expected at the first hit
of the DCH, and dE/dx_measured is a weighted average over the DCH hits of the track, then
there is a small (positive) bias for tracks with small betagamma.

Possible solution:
Note: the small bias at low betagamma is not due to a problem in the dE/dx measurement,
but rather in the calculation of the expected dE/dx.

Possible solutions:

option measured dE/dx expected dE/
dx comments

1
Measured dE/dx of first DCH hit. The
error is calculated as "error of 1st
hit/sqrt(# of dE/dx hits)"

dE/dx of the
first hit

Pro: Pulls good at low
betagamma.
Cons: dE/dx measurement
perhaps unnecessarily
simplified

2 Weighted average of dE/dx of the
hits of the track

dE/dx of the
first hit

As it has been so far.
Cons: small bias of pulls at
low betagamma

3 Weighted average of dE/dx of the
hits of the track

weighted
average of
dE/dx of the
track

Pro: Pulls good at all
betagamma.
Pro: It may be implemented
so that even in case of hit-
merging the pull is good.
Cons(?): It needs to know the
PacSimHit corresponding to a
reco hit.

	Problem at high momenta
	Problem at low momenta
	Current code (using p (reco) at the origin)
	Using p(reco) at DCH
	Using p(true) at DCH
	Using p(true) at DCH and only the info of first (sim)hit
	Comments

