DarkSide Materials Weekly Meeting: Update on Ar activation

Goal: to update the first estimates of cosmogenic activation on **Argon**, mainly of ³⁹**Ar**:

- Including a more realistic exposure history during Ar storage and transportation.
- Considering production by sources other than cosmic neutrons.
 - Correction factors for cosmic ray fluxes: new altitude
 - Exposure history: Aria
 - Results for activity: update
 - Outline of a possible publication

Susana Cebrián <u>scebrian@unizar.es</u> 12th May 2020

Answers to pending questions

- Questions to be clarified to complete the study:
 - Urania: storage of UAr is made at surface when being extracted?

"While at the Urania site, the UAr will always be on the surface while being processed and once in the skids."

 \rightarrow OK with assumption

- Urania: altitude of facilities in Cortez?
 - "According to Google Maps the elevation of the Urania plant will be approximate 7100 ft."

 \rightarrow Higher than Cortez altitude (6191 ft), correction factors updated

Correction factors

Exposure to cosmic rays will happen at different altitudes and latitudes \rightarrow correction factors are needed to the assumed cosmic rays fluxes at sea level, different for different components

J.F. Ziegler, Terrestrial cosmic ray intensities, IBM J. Res. Develop. 42 (1998) 117.

• Protons, muons		$A_1 - A_2$	A_2		Table 3. Se	Table 3. Sea-level particle absorption lengths.			
	w	here I_1 is the ca	, scade flux at	some altitude (pres , both altitudes beir	,	Particle			
	a e	ng Electrons		100					
	C	Protons		110 🔓 113					
		Pions							
					Neutrons		136		
						muon capture	261		
Location	H (ft)	A (g/cm2)		l ratio Cortez mu	l ratio Cortez p	-			
Cortez (1887 m)	61	91 823.480		2.23	6.72				
New York		0 1033.000		I ratio Urania mu	l ratio Urania p				
Urania (2164 m)	71	795.467	,	2.48	8.67				

• **Neutrons** Extrapolation for URANIA location of deduced factors f due to altitude and geomagnetic rigidity at Denver and Leadville.

Location	H (ft)	A (g/cm2)	f	I ratio Cortez	f at Cortez	I ratio Urania	f at Urania
Denver	5280	852.3	4.11	0.809	5.08	0.659	6.24
Leadville	10200	705.2	12.86	2.386	5.39	1.942	6.62
Cortez (1887 m)	6191	823.5			5.23		
Urania (2164 m)	7100	795.5					6.43

Answers to pending questions

- Questions to be clarified to complete the study:
 - Urania: storage of UAr is made at surface when being extracted?

"While at the Urania site, the UAr will always be on the surface while being processed and once in the skids."

 \rightarrow OK with assumption

- Urania: altitude of facilities in Cortez?

"According to Google Maps the elevation of the Urania plant will be approximate 7100 ft."

 \rightarrow Higher than Cortez altitude (6191 ft), correction factors updated

- Aria: total time spent there for UAr?

"No, we have not any idea, also because we have to change the compressor for these new shipping containers." "I will say more or less 90 days for the entire production."

"It will take URANIA 9-10 months to produce all the UAr for DS-20k (64T)"

Depth when being stored after/before processing?

"The containers will be on the surface."

"As the UAr was processed at ARIA it would be put back into the skids. When 3 skids were full, 6T of UAr, they would be sent to LNGS for storage underground."

Assumption: 10 days of exposure at sea level for the processing at ARIA of 3 skids

Thanks to Vance Strickland and Federico Gabriele

Exposure history

 As realistic as possible exposure conditions: tentative exposure times and places (altitude) for shipping: URANIA → ARIA → LNGS

Urania exposure (d)	10	20	30
US trip exposure (d)	7		
Overseas trip exposure	67		
Aria exposure (d)	10		
Itay trip exposure (d)	20		

- Urania exposure: each third of Ar with different exposure time
- US trip exposure: average between maximal (from Cortez altitude) and minimal (sea level) flux
- Overseas and whole Italy exposure: at sea level

Total time for each set of 3 skids (6 T): 134 days (since starting production at Urania to arrival at LNGS)

Total time for 10 sets of 3 skids: 404 days

(since starting production at Urania of first one to arrival at LNGS of last one)

Results

Induced activity *A* knowing the exposure history to cosmic rays at each step

 $A = R [1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$

 t_{exp} = exposure time t_{cool} = cooling time

				Urania		US		Overseas		Aria, Italy		Total	
	R	err	f Urania	А	err	А	err	Α	err	А	err	Α	err
	(kg-1 d-1)			(kg-1 d-1)		(kg-1 d-1)		(kg-1 d-1)		(kg-1 d-1)		(kg-1 d-1)	
n	759	128	6.43	0.689	0.116	0.139	0.023	0.359	0.061	0.161	0.027	1.348	0.136
mu	172	26	2.48	0.060	0.009	0.015	0.002	0.081	0.012	0.036	0.006	0.193	0.016
р	3.6	2.2	8.67	0.004	0.003	0.001	0.001	0.002	0.001	0.001	0.000	0.008	0.003
g	112.8	20.9	1	0.016	0.003	0.006	0.001	0.053	0.010	0.024	0.004	0.099	0.011
total	(from R. Salda	anha et	(from J. F.	0.769	0.117	0.161	0.024	0.495	0.063	0.222	0.028	1.647	0.137
(%)				46.7		9.7		30.1		13.5			

- Slight increase due to higher altitude in Urania and consideration of exposure in Aria
- Activity when arriving at LNGS each set of 3 skids; the effect of cooling underground up to collecting all sets has been checked to be negligible

A err (mBq/kg) 0.0191 0.0016

• Comparison to the very first estimate of induced ³⁹Ar activity:

R (kg-1 d-1)		Exposure		A (mBq/kg)	
1048	126	35 d Colorac	lo + 41 d sea level	0.022	0.003
A	err				
(mBq/kg)					
0.0191 0.	0016				

- The computation of the induced activity of ³⁹Ar in UAr for exposure in surface from Urania to LNGS has been completed assuming an exposure history as realistic as possible now.
- A residual level (at 2.6% of quantified activity in DS50, 0.73 mBq/kg) is confirmed.

Outline of a possible publication

Introduction

DarkSide project and GADMC Problem of cosmogenic activation

The DarkSide-20K Project

Methodology: Production rates \rightarrow Activity \rightarrow Counting rates

Cosmogenic yields in Argon (note at DocDB) Relevant isotopes Production rates Activities for assumed exposure

Underground activation by muons?

Cosmogenic yields in Copper and steel (note at DocDB) Relevant isotopes Production rates

Activities for assumed exposure

Expected counting rates in DS

Description of simulation framework Results Comparison with the whole DS model

Conclusions

For Astroparticle Physics?