Missing Tranverse Energy in first ATLAS data

Donatella Cavalli, <u>Caterina Pizio</u>, Silvia Resconi, Rosa Simoniello

On behalf of ATLAS Collaboration

07.04.2010

IFAE 2010

E^{miss} Reconstruction in ATLAS

Transverse Missing Energy:

$$E_T^{miss} = \sqrt{E_x miss^2 + E_y miss^2}$$

$$E_x miss = -\Sigma Ex$$

 $\mathsf{SumE}_{\tau} = \Sigma \ \mathsf{E}_{\tau}$

Sum of energy of all E_y miss = - Σ Ey $\{$ particles seen in the detector

E_{τ}^{miss} is a complex event quantity:

- It is calculated adding all significant signals from all detectors:
 - Calorimeter input signals (Cells, TopoClusters):
 - in physics objects
 - not used in physics objects
 - Muons
 - Tracks in regions where Calorimeter/Muon Spectrometer are inefficient
 - Correction for energy lost in dead material

From Basic to Calibrated E_T^{miss}

- **Basic E**_T^{miss} from all Calorimeter cells with two possible noise suppression approaches
- Final E_T^{miss} :
 - Different calibrations approaches
 - Correction for energy lost in cryostat between EM and Had calorimeters
 - Contribution from muons

Basic E_{τ}^{miss}

- First data $\rightarrow E_T^{miss}$ is calculated only from the calorimeters (few muons)
- All cells in Topo-Clusters are used

Topo-Clusters are groups of calorimeter cells topologically connected Noise suppression via noise-driven clustering thresholds: Seed, Neighbour, Perimeter cells (S,N,P) = (4,2,0)

- seed cells with $|E_{cell}| > S\sigma_{noise}$ (S = 4)
- expand in 3D; add neighbours with $|E_{cell}| > N\sigma_{noise}$ (N = 2)
- merge clusters with common neighbours (N < S)
- add perimeter cells with $|E_{cell}| > P\sigma_{noise}$ (P = 0)

$$\begin{split} E_{\rm x}^{\rm miss} &= -\sum_{i=1}^{N_{\rm cell}} E_i \sin \theta_i \cos \phi_i, \\ E_{\rm y}^{\rm miss} &= -\sum_{i=1}^{N_{\rm cell}} E_i \sin \theta_i \sin \phi_i, \\ E_{\rm T}^{\rm miss} &= \sqrt{(E_{\rm x}^{\rm miss})^2 + (E_{\rm y}^{\rm miss})^2}, \end{split}$$

The sum is done on all cells in TopoClusters

EM scale calculation, no calibration applied

Data samples and event selection

- Data (stable beam, nominal field condition, good calorimeters):
 - 900 GeV data and 2.3 TeV data
- MonteCarlo:
 - PYTHIA/Geant4 Minbias events: 1 Mevts at 900 GeV (200 Kevts at 2TeV)
 - Non diffractive(ND) + Single/Double diffractive(SD/DD) DD/SD/ND = 6.4 / 11.7 / 34.4 mb
- Collision Candidates selection (on data and MC):
 - Evts triggered by at least 1 Minimum Bias Trigger Scintillator (MBTS_1_1)
 - Signals coinciding in a time window observed in both sides of end-cap calo or MBTS (MBTS timing (Δt_{A-c} <10 ns) .OR. LAr timing (Δt_{A-c} <5 ns))
 - Event Cleaning vs fake jets (Antikt R=0.6 jets (EM scale) p_T >7GeV):
 - Known problematic cells, energy estimated from neighbours jet energy coming from such cells must be <20%
 - · Jet energy not concentrated in less than 3 cells
 - Few per mill events rejected

\rightarrow data ~600Kevts at 900 GeV (20kevts at 2TeV)

Caterina Pizio

IFAE 2010

Randomly trigger events

- Useful to understand the noise contribution
- Gaussian distribution centred on zero with RMS 0.43 GeV
- No tails in $E_{\!\!\!T}^{\rm miss}$ distribution as expected

6

pp collision events $\sqrt{s} = 900 \text{ GeV}$

- In minbias events \rightarrow no true MET \rightarrow E_{x/v} distributions peaked at 0
- RMS 1.4 GeV → higher than in randomly trigger evts because of
 - real ΣE_{T}
 - finite calorimeter resolution
- Very few tails
- Good agreement DATA-MC

pp collision events $\sqrt{s} = 2.36 \text{ TeV}$

8

- In minbias events \rightarrow no true $E_T^{miss} \rightarrow E_{x/v}$ distributions peaked at 0
- RMS 1.8 GeV
- No events in tails!
- Very good agreement DATA-MC

E_{τ}^{miss} Tails

- New physics may produce $E_{\!\scriptscriptstyle T}^{\rm _{miss}}$ Tails
 - Need to control fake Etmiss at a very high level
- Main sources of Fake E^{miss}_t
 - Hardware (noisy cells, problems during DAQ, ...)
 - Software (corrections for "bad" calorimeter regions)
 - Physics (Cosmic background)
- Strategy up to now: remove ANY noisy jet events
- Work started on alternative solutions:
 - > Detect fake Tile TopoCluster, use cluster timing

Missing ET Resolution

- E_x^{miss} and E_y^{miss} as a function of ΣE_T
- Plot done in $\Sigma \, \operatorname{\mathsf{E}}_{_{\! T}}$ bins
- Good agreement data-MC

(10)

Refined E_{τ}^{miss}

- Separate contributions of reconstructed physics objects (e/ γ , τ , b-jet, jet, μ , ...)
- Most **complex schema** to apply after validation of reconstructed objects:
 - After particle identification, decomposition of each object into constituent Calorimeter Cells

Here used to separate the different contribution in the event E_{T}^{miss}

CellOut & RefJet Contributions

In minimum bias events E_T^{miss} is due to :

- cells in topoclusters not associated to any reconstructed object (CellOut) —
- cells belonging to jets (**RefJet**) → Jet Energy measured at EM Scale, jet p_T >4GeV |

Data in very good agreement with MC $\rightarrow E_T^{miss}$ is well understood in ATLAS!

IFAE 2010

Conclusions and Outlook

- Minbias evts at 0.9 (2.36) TeV provide a first test of E_{T}^{miss}
- \rightarrow The algorithms in MET package work well and are robust.
 - > Work at EMscale with cells from TopoClusters : MET_Topo
 - > Missing transverse energy (E_x^{miss} , E_v^{miss} , E_T^{miss}):
 - Good agreement data-MC for distribution and performance
 - With good calorimeter + event cleaning, E_{T}^{miss} tails compatible with MC

IFAE 2010

- > A look at different terms entering final $E_{\tau}^{miss} \rightarrow Encouraging results$
- Plans for 7 TeV
 - ~10 pb⁻¹: QCD di-jets $\rightarrow E_T^{miss}$ calibration
 - 10-100pb⁻¹: W production \rightarrow set E_T^{miss} scale with W \rightarrow Inu
 - 100-200pb⁻¹: Z production
 - diagnostic plot in Z \rightarrow II (sensible to CellOut)
 - E_{τ}^{miss} scale with $Z \rightarrow \tau \tau$

Backup

Time stability

Toward Final MET calculation

Figure 7: Left: Distribution of E_T^{miss} computed with cells from topoclusters not in reconstructed objects (CellOut) for data and Monte Carlo at 900 GeV center of mass energy. Right: Distribution of ETmiss (RefFinal) for data with superimposed distributions of CellOut and CellOut+RefJet for data. In both case, cell energies are at EM scale.

Here jets reconstructed with Antikt D=0.6 algorithm (EM scale) with pT>4 GeV are used. Only 4% of events in data and 5 % in MC have jets (RefJet₁₆ #0)

➔ 4 plots approved in December with low statistics

After Xmas reprocessing: update the plots with all 2009 statistics+new plots $\rightarrow CONF$ Note 17

- $\Rightarrow Basic E_T^{miss} \text{ from all Calorimeter cells with two possible noise suppression} approaches (MET_Base, MET_Topo)$
- ⇒ Final E_T^{miss} adding calibration step plus contribution from muons and for dead material (MET_Final):
- Different calibrations approaches:
 - Global cell energy density calib (GC) and local hadron calib (LC)
- Correction for energy lost in cryostat between EM and Had calos (MET_Cryo)
- Contribution from muons (MET_Muon)

Figure 1: E_x^{miss} (left) and E_y^{miss} (right) distributions obtained from randomly triggered events. E_x^{miss} and E_y^{miss} are computed with topocluster cells at EM scale.

Toward Final MET calculation

Here jets reconstructed with Antikt D=0.6 algo (EM scale) with pT>4 GeV are used. Only 4% of events in data and 5 % in MC have jets (RefJet #0) Look at RefJet distribution

Event in data with MET around 30 GeV: - 1 jet Antikt06 pt ~ 40.6 GeV eta = 1.1952710 phi = -1.125769emfraction = 0.94n90 = 61 fcor = 0.0063 (cell-level energy corrections for missing calorimeter cells) MET is back-to-back with the jet

Event in MC with MET around 30 GeV: - 1 jet Antikt06 pt ~66.3 GeV eta =0.6583793, phi= 0.9532663 emfraction = 0.8438582 n90 = 125 fcor=0 dphi_met-jet= 2.9082090