
Plan for next months

- Top Physics
- B-tagging
- D3PD Maker for tracking
- Vertexing (in this presentation)

Vincenzo

Primary Vertex

Beam Spot

- Spatial distribution of the interacting proton-proton pairs -

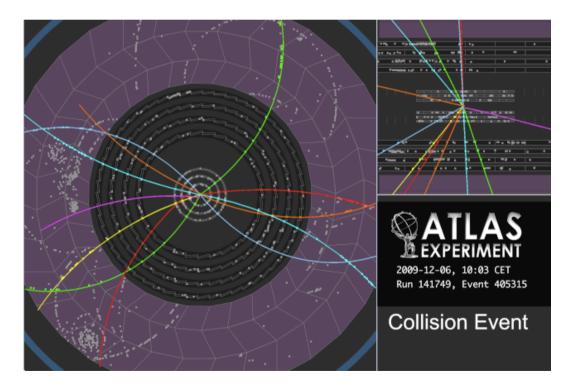
$$\sigma_{BS} = \frac{\sigma_{bunch}}{\sqrt{2}}$$

√s (TeV)	0.9	2.36	2.36	7	7	7	10	10	10	10	10	14
Beam energy (TeV)	0.45	1.18	1.18	3.5	3.5	3.5	5	5	5	5	5	7
Beta* (m)	11	11	11	11	4	2	11	2	1	3	2	0.55
Beam size (µm)	293	132	175	105	63	45	88	38	27	46	38	17
Bunch length (cm)	11.24	8	8	6.00	6.00	6.00	5.41	5.41	5.41	5.41	5.41	7.55
Crossing angle (µrad)	0	0	0	0	0	0	0	0	0	300	285	285
Gamma	4.8E+02	1.3E+03	1.3E+03	3.7E+03	3.7E+03	3.7E+03	5.3E+03	5.3E+03	5.3E+03	5.3E+03	5.3E+03	7.5E+03
Normalized emittance (πμm rad)	3.75	2	3.5	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75
Emittance (π m rad)	7.8E-09	1.6E-09	2.8E-09	1.0E-09	1.0E-09	1.0E-09	7.0E-10	7.0E-10	7.0E-10	7.0E-10	7.0E-10	5.0E-10
F (luminosity reduction factor due to crossing angle)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.98	0.84
Transverse beam spot size σ_x,y (μm)	207	94	124	74	45 /	32	62	27	19	32	27	12
Longitudinal beam spot size σ_z (cm)	7.9	5.7	5.7	42	4.2	4.2	3.8	3.8	3.8	3.8	3.7	4.5

Luminosity/Pile-up

Luminosity as a function of geometrical charateristics of the colliding bunches & machine param

$$L=rac{N_b^2 n_b f_{rev} \gamma_r}{4\pi \epsilon_n eta^*} F_s$$
 $_F=\left(1+\left(rac{ heta_c \sigma_z}{2\sigma^*}
ight)^2
ight)^{-rac{1}{2}}$


$$R = \sigma_{MB} \cdot \mathcal{L} \cdot \frac{\Delta t_{BC}}{1 - f_{empty}}$$

Low-luminosity scenario @ 7 TeV almost 4.6 pile-up events per bunch-crossing are expected

Primary interaction vertex

can be usually distinguished in two different stages:

- 1. Vertex Finding
- 2. Vertex Fitting

Vertex Finding

- correctly clustering tracks into multiple vertices, doing the tracks to vertices association properly.
- Optimal distinction of primary from secondary tracks
- Optimal separation of tracks originating from different but closely positioned vertices from the signal or additional pile-up events

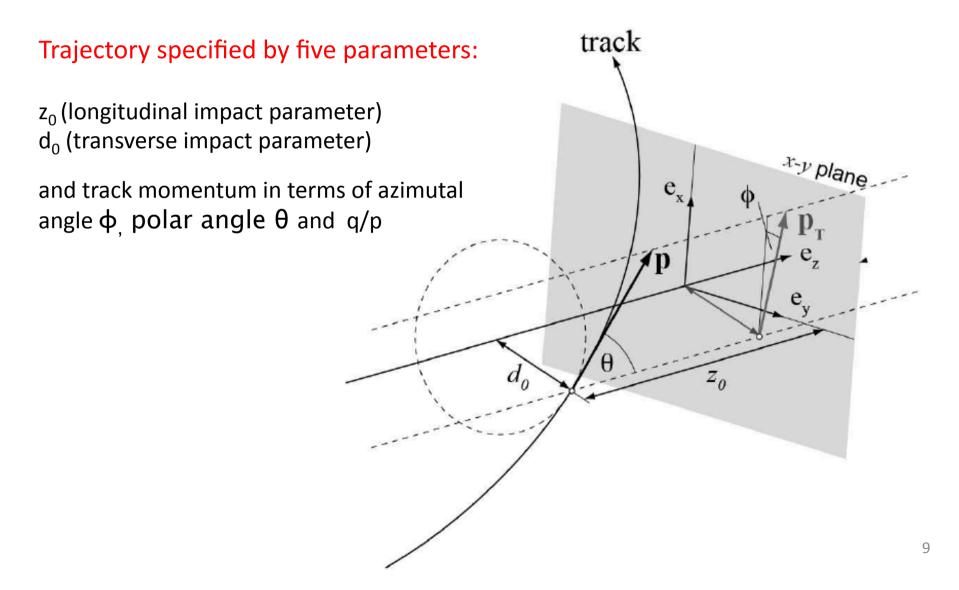
Vertex Fitting

- Deal with the problem of getting the best estimate of the vertex position, once a certain set of tracks is defined.
- Some methods for vertex fitting, however, deal intrinsecally also with part of the vertex finding problem, creating a vey close interplay between finding and fitting tasks.

Primary Vertex @ ATLAS

- The trans. resolution of the primary vertex is comparable to the transverse size of the BS
- Reconstruction of the primary vertex position along the longitudinal direction is essential:

it permits to improve longitudinal resolution from the nominal 4-5 cm to 30-50 μm.


- The distinction of primary and secondary tracks is of utmost importance not only for b-tagging but also for τ -tagging, photon-lepton identification, etc...

Pile-up events will be produced randomly spread across the interaction region, givent that the longitudinal size of of the beam-spot is much larger than the longitudinal primary vertex Resolution of tipical min bias events several vertices can be separated along the z axis and Reconstructed on an event by event basis; one of them will correspond to the high PT event of interest.

It's not straighforward, after all primary vertices corresponding to a single recorded bunch crossing are recostructed, to identify the vertex containing the physics event of interest as the ATLAS reconstruction software needs to remain very generic (generic event properties)

Perigee representation

Mathematical determination of the vertex position

Vertex fit

Well defined task:

N input tracks -> determining intersection:

vertex and its error

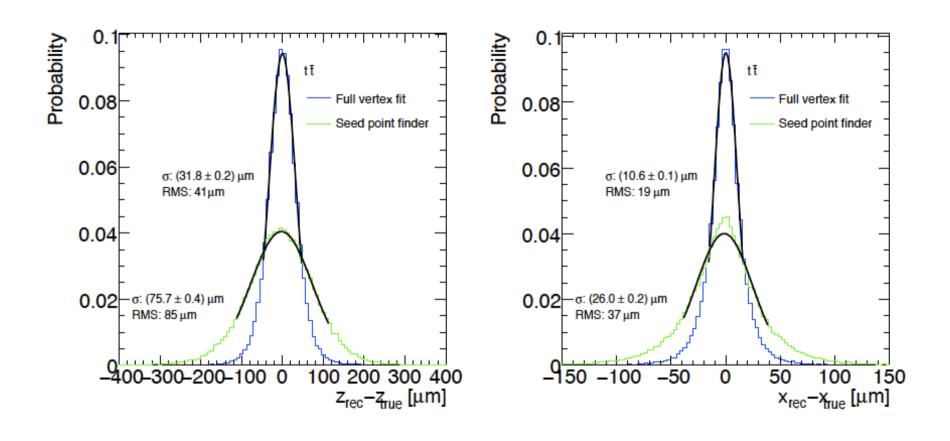
(Doesn't care wheather the hypotesis that N input tracks intersect a single point is correct or not)

$$\chi^2(\vec{r}) = \sum_{i=1}^{N_{trk}} (\vec{r} - \vec{r}_i(\hat{\phi}_{p,i}))^T \text{COV}_{3\times 3,i}^{-1}(\hat{\phi}_{p,i})(\vec{r} - \vec{r}_i(\hat{\phi}_{p,i}))$$

 χ^2 estimator, minimize this function numerically

Global χ² fit

Vertex Fitting

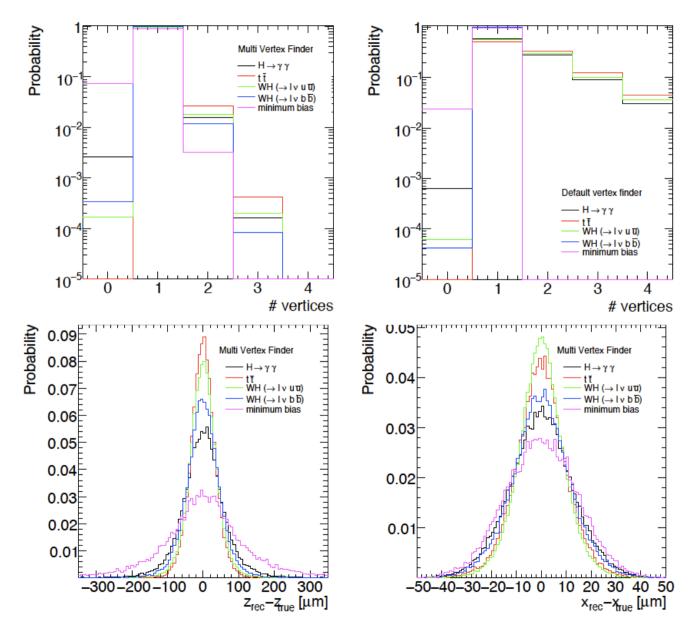

- Global χ^2 minimization
- Billoir method (complexity N_{trk} instead of N_{trk}³)
- Kalman Filter (single step k adds a trk to the V)
- Adaptative methods:
 - 1. Adaptive vertex fitter
 - 2. Adaptive Multi-Vertex fitter

$$\omega(\hat{\chi}^2) = \frac{1}{1 + \exp\left(\frac{\hat{\chi}^2 - \chi_{cutoff}^2}{2T}\right)}$$

Vertex Finding

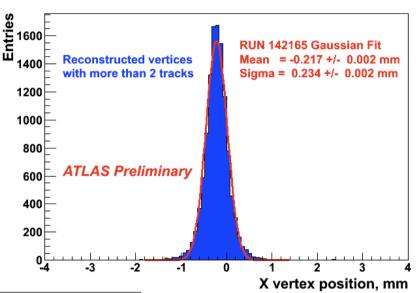
- Default Vertex Finder (fitting after finding)
 - Once z position for each track is known -> vertex clustering tool
 - Many implementation (sliding window, 5 mm),
 - Tracks with $\chi^2 > 6$ rejected
 - Tracks rejected are lost
- Adaptive Vertex Finder & Adaptive Multi-Vertex Finder (finding through fitting)
 - Seed finder (3D, z-scan) used to find first seed for Vtx
 - Vtx fitter (tipically AVF) to fit new Vtx cand
 - incopatible trks used to find a new vtx seed until no trks are left
 - complete set of fitted vertices
 - AMVF, the new vertex is fitted simultaneously with all previous vertices

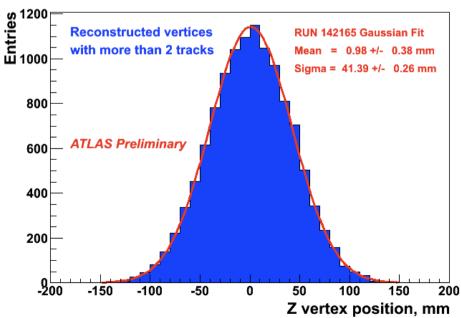
Perform. of seed finders


Finder-Fitter @ ATLAS

Name	Vertex finder	Vertex fitter	Deals with pile-up
Default vertex finder	Default vertex finder	Billoir vertex fitter	yes
Sequential vertex finder	Default vertex finder	Kalman vertex fitter	yes
Adaptive vertex finder	Adaptive vertex finder	Adaptive vertex fitter	no
Adaptive multi-vertex finder	Adaptive multi-vertex finder	Adaptive multi-vertex fitter	yes

To isolate signal vertex among all found primary vertices:


- trans mom of the associated Trks
- number of associated Trks
- for APVF discriminator based on SUM pT², NN, etc...


Plots (MC no pile-up)

Vertex posit. 900 GeV Data

Further studies are ongoing Sequential vertex finder used Good vtx efficiency if Ntrck>4

