ACTIVITES & MILESTONES FOR 2021

LIME

- water);
- Analysis: analysis of data taken with LIME;
- **1 m³ DEMONSTRATOR**
- **Design studies** and start material procurement and realisation of detector and shieldings
- Simulation: simulation of signals and background in the 1 m³ demonstrator and LIME

underground tests of LIME at the LNGS

realisation of a purification and recirculation

realisation of a DAQ system prototype

• Test overground (LNF and LNGS) and underground (LNGS): Setup of Labs at LNGS, LIME installation, development and realisation of GAS and DAQ systems, study and realisation of shieldings (Copper and

• **Background reduction:** Development and test of low radioactive GEM, optics, sensors and materials;

30-06-2021
31-12-2021
31-12-2021

TOTALE PREVENTIV 2021

	FTE	Missioni (k€)	Consur
LNF	2.8	18	3
LNGS	5.4	5	2
RM1	2.8	12.5	Q
RM3	0.4	2	ξ
Totale	11.4	37.5	6

For **2020** we are asking a "**Sblocco SJ**" of **6 k€** for starting the development of a "detector monitoring system" based on Fibre Bragg Grating at LNF;

So far, we are not asking other "Sblocchi SJ" for travels and transportations;

Inventariabile Transportations no (k€) Totale (k€) (k€) 8 3 59 20 45 0 38 0 59.5 0 7 0 66 3 170.5

WBS I	D TASK	APPROVAL (2019)			DESIGN and PROCUREMENT (2020)			PROCUREMENT and CONSTRUCTION (2021)			CONS ⁻ INSTAI	TRUCTION : LLATION (20	and)22)	COMMISSIONING – OPERATION (2023-2024)						C
		CYGNO	INITIUM	Tot19	CYGNO	INITIUM	Tot20	CYGNO	INITIUM	Tot21	CYGNO	INITIUM	Tot22	CYGNO	INITIUM	Tot23	CYGNO	INITIUM	Tot24	CYGNO
1.3.1	Safety & Healt	5		5			0			0	5		5	5		5			0	15
2.2.1	Vessel			0			0		20	20			0			0			0	0
2.2.2	GEM			0			0			0		20	20			0			0	0
2.2.3	FC & Cathode			0			0		12	12		0	0			0			0	0
2.2.4	Lens			0		5	5			0		36	36			0			0	0
2.2.5	Camera			0		16	16			0			0		160	160			0	0
2.2.6	PMT/SiPM	5.5		5.5			0			0		21	21			0			0	5.5
2.2.7	Shielding			0			0		150	150		200	200		77	77			0	0
2.2.8	CRT			0			0			0			0			0		20	20	0
2.2.9	DAQ & Storage			0			0			0		50	50		50	50		5	5	0
2.2.10	Calibration			0			0			0		12	12			0			0	0
2.2.11	High Voltage System		16	16		16	16		70	70			0			0			0	0
 2.2.12	Gas System	7		7		60	60	20		20			0			0			0	27
2.2.13	Axiliary Services (Sensors)			0	6		6	8	20	28	0	25	25		5	5			0	14
2.2.14	Gas Bottles	5.5		5.5	4	5	9	30		30	20		20	20		20	20		20	99.5
2.2.15	Consumables	5		5	6		6	25		25	20		20	20		20	20		20	96
2.6.1	R&D LIME/MANGO	16.5	5	21.5			0	20		20			0			0			0	36.5
2.7.1	R&D GEM			0			0	5		5	5		5			0			0	10
2.8.1	R&D Camera			0	4	4	8			0	80		80	80		80			0	164
2.9.1	R&D Lens			0		10	10	5		5			0			0			0	5
2.10.1	R&D DAQ		3	3	5	26	31	18		18			0			0			0	23
3.2.1	Transportation			0	3		3	3		3	10		10	10		10			0	26
	Total (detector)	44.5	24	68.5	28	142	170	134	272	406	140	364	504	135	292	427	40	25	65	521.5
	Travels	9.5	10	19.5	16	10	26	37	20	57	50	20	70	50	20	70	50	20	70	175.5
	Total	54	34	88	44	152	196	171	292	463	190	384	574	185	312	497	90	45	135	697

Total costs in 6 years:

CYGNO = 522 + 175 (travels) = 697 k€

INITIUM = 1119 + 80 (travels) = 1199 k€

General comments were positive;

prepared to defend it;

Referees asked to meet before next CSN2 to discuss following items:

- INTERNAL BACKGROUND: maximum acceptable values and how to get there;
- LIME PERFORMANCE: response homogeneity, electrostatic stability, efficiency, discrimination, reco 3D...
- NON-LINEARITY: grid, software correction, hardware correction;
- CHINOTTO: performance and background in case we go with a smaller demonstrator;
- MILESTONES

President (Cremonesi) and Referees noticed that total amount of requests is not negligible, so we have to

Summarise results of simulations (RM1);

- Collect information about low radioactivity copper, acrylic and other materials (LNF?);
- Measure radioactivity of Kentaru foil (GSSI);
- Measure radioactivity and "broken" camera, as soon as it arrives (GSSI);
- Get in contact with T-Rex people to start studying low radioactive GEM (LNF);

- We already took a lot of data (1e5 images). Analysis needed:
- stability for weeks;
- ⁵⁵Fe;
- AmBe; -
- = 137Cs;
- Cosmics;
- Pedestals;
- Giovanni+Emanuele+Igor are looking at the data. We should have some results in few weeks;

NON LINEARTY

Software

Francesco+Emanuele provided a recipe to correct the gain. We'll test it on new LIME data;

Hardware

We should add a grid to LEMON and try to work with lower gain. Is it feasible at LNF?

CHNOTTO

Simulation of performance (GSSI) and background (RM1) of a smaller (0.4 m³) with a thinner shielding (110 cm water and 10 cm copper)

MILESTONES

10310>	
31-07-2020	Valutazione dei fondi di radioattività
30-09-2020	Studio performance Reiezione e Direzionalità
31-12-2020	Test prototipo LIME in ambiente a bassa radi

 tà
 UK

 dioattività.
 OK

 Any possibility to go in a low radioactive environment?

LIME - 55FE SPOTS

- 5 cm from GEMs

- 20 cm from GEMs

 V_{GEM} = 440, E_D = 0.8 kV/cm

- 45 cm from GEMs

No evidence of large efficiency drop

Me Coll RD51 80 Ч И И Ζ Pinci \Box

GEM OFF

Z=15 CM (FROM GEM)

Charge Loss or Optical effect?

Let's assume 2.05 over 850 pixels

After a not-even-suboptimal linear correction

thr 1 keV = 1180 counts acquired 0.3 sec (need to multiply by a factor 10⁸ to evaluate 1 year); number of "fake clusters" in 10 years < 0.0001;