

Simulation update

E. Baracchini¹, G. Cavoto², A. Cortez¹, G. V. López¹, A. Coto¹, G. D'Imperio², F. Di Clemente², E. Di Marco², G. Dho¹, M.L. Migliorini³, R.A. Nobrega³, F. Petrucci⁴, D. Pinci², F.Renga²

² Università La Sapienza e INFN Roma ³ Universidade Federal de Juiz de Fora, Brazil

⁴ Universidade Federal de Juiz de Fora, Bra

⁴ Università di Roma3 e INFN Roma3

CYGNO general meeting 02/07/20

Background simulations

Summary of backgrounds in CYGNO (wip)

	ER/yr 1-20 keV	NR/yr 1-20 keV
GEM	5.14E+05	5.07E+03
AcrylicBox	4.34E+05	-
CameraBody (shield)	4.46E+05	-
CameraLens (shield)	9.83E+05	-
External Gammas		
(200Water + 5Cu)	9.75E+02	-
Total	2.38E+06	5.07E+03
CameraBody (no shield)	3.20E+06	0.00E+00
CameraLens (no shield)	1.60E+06	0.00E+00

Summary background spreadsheet: https://docs.google.com/spreadsheets/d/1SKkd1C-zJoFzb0ZRk G0D9_vN0r5A9S34sIWk0KHQqxg/edit?usp=sharing

Camera and lens background in LIME

lsotope	Radioactivity	Counts [0-20] keV	Isotope	Radioactivity	Counts [0-20] keV
Th-232	0.98 Bq/lkg	139	Th-232	0.726 Bq/kg	148
U-238	18.72 Bq/kg	6312	U-238	6.15 Bq/kg	4076
U-235	0.188 Bq/kg	676	U-235	0.145 Bq/kg	154
K-40	0.893 Bq/kg	1178	K-40	51.5 Bq/kg	22961
Total	20.781 Bq/kg	8305	La-138	2.44 Bq/kg	0

	r S		
La-138	2.44 Bq/kg	0	
Total	60.9 <mark>61 Bq/kg</mark>	27339	
Roughly scales as expected O(100) less than CYGNO (only 1 camera and ~20 times smaller active mass)			

A. Cortez

Shielding studies

Table 1: Background rates. Copper costs $(25 \in /\text{kg})$ assuming for LIME: $50 \times 50 \times 100 \text{ cm}^3$ internal shielding size; 0.162 m^3 for 5 cm, 0.406 m^3 for 10 cm, 1.188 m^3 for 20 cm; for $4 \times \text{LIME}$: $90 \times 90 \times 200 \text{ cm}^3$ internal shielding size 1.040 m^3 for 10 cm

	Detector	Water/Copper	Water	Copper	[1-20] keV	
	Volume (m ³)	Thickness (cm)	Cost (k€)	Cost (k€)	сру	
	1	250/5			1×10^{2}]
	1	200/5			1×10^3	
	1	100/5			2×10^5	
(1	85/5			1×10^{6}	D
	1	50/5			8×10^{6}	Γ
>	0.05	-	-	-	3×10^{8}]
	0.05	50/5	20	40	$5{\times}10^5$	
	0.05	50/10	20	95	5×10^{4}	
	0.05	100/5	25	40	3×10^4	
(0.05	110/10	25	95	2×10^{3}	D
	0.05	50/20	20	270	1×10^{3}	
	0.40	90/10	50	250	2×10^{4}	D

Our rejection capability in [1-20] keV is something between **10²-10**³

Background rates were evaluated with simulation

There are 3 solutions that fit in the Hall-F;

- CYGNO (1m³) with a too high bkg rate;
- LIME (50 l) with 110/10 shielding scheme (2x10³);
- A matrix of 2x2 double-LIMEs (0.4 m³) with 90/10 shielding scheme (2x10⁴);

LIME 2x2x2 → "CYGNO in a bottle"

OND/

Next steps

- To do: simulate radioactivity of other parts close to sensitive volume (cathode, field cage, GEM and cathode frames)
- Study the position of nuclear recoils and optimize fiducialization
 need dedicated simulations that save the information of hits positions
- Do we need dedicated simulations of "CYGNO-in-a-bottle"? Maybe for internal background we can rescale CYGNO simulations, and run full simulation only for external backgrounds to optimize the shielding

MC digitization ad analysis

Improvements to digitization

F.Petrucci

Notes on how to improve in digitization:

- Sensor noise
- Gain & fluctuations
- Diffusion

Sensor noise

• Current implementation: Add to each image pixel a random value from a Gaussian distribution with mean=99 photons and σ =2 photons.

BUT:

 data shows a pixel noise RMS distribution with non Gaussian tails well above the mean value of 2.

"Easy fix":

Assign each pixel a different Gaussian noise RMS:

CYGN

ORCA Flash sensor - Noise characteristics

- ORCAD Flash sensor noise process
 - Non Gaussian
 - High occurrence of telegraph noise ("spikes") ~ 20%
 - Empty bins

ORCA Flash sensor - Simulation proposal

- Simulate noise from its ECDF measurement
- Each pixel with its own ECDF

Simulating 100k samples to compare simulated and real data

Example of a pixel

1. Creation a ECDF_map file (~ ped_map) from a noise acquisition run

0.00

100 200 300 400 500

R. Nobrega

95

100

105

100 200 300 400 500

sim data

Next steps

- Noise simulation current approach: gaussian noise with 2 ph RMS
 - Improve sensor noise simulation → follow Rafael's approach
- Diffusion simulation current approach: fixed to 500 um for LEMON
 - Improve diffusion simulation introducing z dependence:

$$\sigma_{\mathrm{T}} = \sqrt{\sigma_{T_0} + D_T^2 \cdot z}$$
 where:

- $\sigma_{T_0} = 300 \mu \text{m}$ (measured from data)
- $D_T = 141 \,\mu m/V cm$ (from simulation?)
- Introduce gain fluctuations simulation
 - Convolution of poisson distribution of primary e- production (mean 42 eV/e-), and exponential distribution of each GEM (gain of single GEM ~80)

CMOS analysis with ML

Fourier Analysis of CMOS images

⁵⁵Fe tracks

Low energy electron track

Cosmics track

Many tracks of different types

G.V. López, A. Coto

Ideas for next steps

- Fourier transform of different type of tracks look visually very different
- Idea: use Fourier transform of CMOS pictures for machine learning analysis
- Input needed:
 - MC digitized pictures of ER and NR of various energies to train the algorithm
- This approach can be used in parallel to the standard analysis of tracks in order to cross-check the results and compare the performances

Backup

Radioactivity measurements

Camera Body Orca Flash	Limit/M eas	Activity (Bq/kg)
U238 (Th234)	М	3.16E+00
U238 (Ra226)	М	8.13E-01
U235	М	1.81E-01
Th232 (Ra228)	М	9.49E-01
Th232 (Th228)	М	9.49E-01
K40	М	8.59E-01
Cs137	М	4.07E-02
Co60	L	5.42E-03

Camera Lens Orca Flash	Limit/M eas	Activity (Bq/kg)
U238 (Th234)	М	4.22E+00
U238 (Ra226)	М	1.92E+00
U235	М	1.45E-01
Th232 (Ra228)	М	3.61E-01
Th232 (Th228)	М	3.65E-01
K40	М	5.15E+01
Cs137	L	2.67E-02
Co60	L	4.64E-02
La138	М	2.44E+00

Acrylic Box	Limit/M eas	Activity (Bq/kg)
U238 (Th234)	L	3.50E-03
U238 (Ra226)	L	3.50E-03
Th232 (Ra228)	L	5.00E-03
Th232 (Th228)	L	4.50E-03
K40	L	3.50E-02

GEM	Limit/M eas	Activity (Bq/kg)
U238 (Th234)	М	1.63E-01
U238 (Ra226)	М	3.25E-02
U235	L	1.58E-02
Th232 (Ra228)	L	3.09E-02
Th232 (Th228)	L	1.56E-02
K40	L	3.58E-01
Cs137	L	8.13E-03
Co60	L	7.48E-03