

# Preliminary <br> Bremsstrahlung Yield calculation 

F. Oliva on behalf of the PADME Lecce group

## OUTLINE

Aim: Bremsstrahlung Yield calculations

## Two Ways:

Difference of the occupancy plot PVeto w and w/o target both for MC and DATA
Coincidence PVeto SAC

## Number of photon emitted from Bremsstrahlung

$$
\begin{array}{r}
N_{\gamma}=\frac{d}{X_{0}}\left[\frac{4}{3} \ln \left(\frac{k_{\max }}{k_{\min }}\right)-\frac{4\left(k_{\max }-k_{\min }\right)}{3 E}+\frac{k_{\max }^{2}-k_{\min }^{2}}{2 E^{2}}\right] . \\
\text { From PDG }
\end{array}
$$

kmin, kmax Energy of the Photon Emitted from a
Bremsstrahlung process
E energy of the Beam, Xo radiation length, d target thickness
Check of the formula
Energy of emitted photon

$$
1 \leq k \leq 490 \mathrm{MeV} \quad \text { Cross Section Bremsstrahlung }
$$



From Padme proposal

Acceptance Veto cuts $50 \leq E e+\leq 440 \mathrm{MeV}$
$50 \leq k \leq 440 \mathrm{MeV}$
Cross Section Bremsstrahlung
$1.04402 \mathrm{e}-24 \mathrm{~cm} 2$
1.04402 barn
(For example from Chid 15 - Ee+ 50 MeV , ChId 90440 MeV )

$$
N_{Y}{ }_{\text {tOT }}=N_{V}{ }^{*} N_{P O T}
$$

for NPOT DATA $9.3 \times 10^{9} \quad$ Ny expected $1.71454 \mathrm{e}+07$

PVeto Occupancy Plots for MC and DATA with and w/o target
PVetoClusterEnergy >1 MeV

With target w/o target

DATA Golden Run Of July
${ }^{*} M C$ w/o target means with a target of thickness $0.001 \mu \mathrm{~m}$ MC MC 23kPOT, 150 ns Bunch Length Veto digi 17 ns sigma 0.4 MeV vetoes

PVeto_Chld_Clus_DATA


Bin0 as reference?
Same rate with and w/o target as expected

Without Scaling the DATA occupancy plot


Same shape for MC and DATA
It seems to be the correct normalisation!

## Preliminary calculation of the Bremsstrahlung Yield



## $60 \leq C h l d \leq 70$

YieldMC xmin $60 \times m a x 702.06341 e+06$
YieldDATA xmin $60 \times m a x 702.00748 \mathrm{e}+06$
Chld 60-> Ee+ min ~233 MeV *
Chld 70-> Ee+ max ~295 MeV *
Eymin 195 Eymax 257
Ngamm TOT 1.97607e+06 for NPOT 9.3e+09
$10 \leq C h l d \leq 70$
YieldMC 5.65152e+06
YieldDATA $5.24388 \mathrm{e}+06$
Chld 10-> Ee+ min ~38.5 MeV *
Chld 70-> Ee+ max ~295 MeV *
Eymin 195 Eymax 451
Ngamm TOT 5.87062e+06 for NPOT 9.3e+09

From Preliminary Yield Calculation, MC and DATA yield not so different from the analytic calculation

Integral (binxmin,binxmax)

Considering the plot of the PVeto occupancy the agreement MC DATA is for $40 \leq$ Chld $\leq 70$


Yield Bremsstrahlung


Ngamma TOT MC $4.22978 \mathrm{e}+06$ NPOTMC $\quad 9.3 \mathrm{e}+09$

Integral (binxmin,binxmax)
YieldMC xmin $40 \times \max 704.23264 \mathrm{e}+06$
YieldDATA xmin $40 \times \max 70 \quad 4.014 \mathrm{e}+06$

## Not so different from the analytic calculation, to be checked better

## What about HEP Veto Bremsstrahlung yield?



## Energy acceptance

$340<E e+<430 \mathrm{MeV}$ Yield 7.8e+06 $340<E e+<420 \mathrm{MeV}$ Yield $6.4 e+06$

A calibration with a single positron was performed for HEP Veto to obtain the energy acceptance


In the linear range $340<E e+<410 \mathrm{MeV}$ Yield 5.2e+06

## HEP Veto and PVeto Chld in time coincidence



The energy cover could be checked also looking at the correlation between Chld HEP Veto Vs Chld PVeto Plot


## Today results..

## MC moving the PCB



## MC DATA NoTarget





PADME internal Meeting, 30th April 2020

## MC DATA Target






YieldMC xmin 0 xmax $155.93164 \mathrm{e}+06$
YieldDATA xmin 0 xmax 15 4.52642e+06

Acceptance HEP..<br>$340<E e+<410 \mathrm{MeV}$ Yield $5.2 e+06$<br>$340<E e+<420 \mathrm{MeV}$ Yield $6.4 e+06$

Considering the time coincidence with SAC, the yield could be extracted in different ways:

- PVeto and SAC clusters in time coincidence ( $\Delta t<1$ ns), taking the SAC energy bin projection of the 2D plot SAC energy VS ChIDSeed PVeto

Not so stable

- Considering the spectrum of the sum of the positron \& photon (should have a peak at the energy of the beam)
- Considering the plot of the time difference PVeto SAC clusters

One step back.. Is the MC SAC mimicking the real SAC behaviour?

## SAC hit and cluster spectra not in agreement

Hit energy


Cluster Energy



Requiring the coincidence with the central SAC crystal
Chld SAC 22


## Emulate SAC signal integration time in MC



## Default MC

Digi time Window 1ns

First peak at 4ns chosen

MC with Digi Time Window 4ns

Comparison between DATA MC (SAC dig 1ns and 4ns)




Difference at low energy to thr chosen for the reconstruction, to not overload the reco

SAC digi 1ns


SAC digi 4ns


The study in the following slides was performed both conoidering the MC prod with SAC digitise 4ns and 1ns

Yield Method I
Yield from time coincidence with SAC
PVeto and SAC clusters in time coincidence ( $\Delta t<1 n s$ )

MC



Inaccurate Method

Fit with a combination of function each projection, calculate the area of the gaussian and then sum this yield for all the fingers

A possibility to obtain the Brem. yield could be taking the signal integral from this plot In the range of Chld PVeto agreement MC DATA

## SAC digi 1ns



## *obtained from Momentum calibration

Asking for Esac>20 MeV to avoid the thr effect


## SAC digi 4ns



## Why a peak at lower energy?

Probably photons in PVeto in coincidence with low energy SAC clusters.
Remember that the energy of the veto cluster is given by the position.

Asking for Esac>20 MeV to avoid the thr effect


MC digi 4ns
E PVeto cluster + E SAC cluster in coincidence VS Chld Seed PVeto

$\Delta t$ Cluster SAC/Pveto < 1ns

First peak in the ESAC+EVeto spectrum
 due to low energy clusters in SAC

SumSACPVetoVsChldPVeto_Clus_inTime_1ns_thr1MeV_Chld40_70

## DATA



SumSACPVetoVsChldPVeto_Clus_inTime_1ns_thr1MeV_Chld40_70


SAC energy VS PVetoChID


## SAC energy VS PVetoChID



With an energy threshold for SAC it's possible to select only Bremsstrahlung events candidate



Considering the same plot for DATA with and without the target..
PVeto Chld 40-70
DATA Target/NoTarget
SAC energy> 150 MeV


Could we calculate the Bremsstrahlung yield considering the entries of this plot?

MC digi SAC 4ns


Photons on SAC expected~ 4.2e+06

MC Yield
992880 * Scalefactor $=4.1$ M

## DATA Yield

3.39 M


MC digi SAC 1ns


## MC Yield

## Entries*Scalefactor ~5e+06



## Yield Method III

Considering the time difference between SAC and PVeto selecting the PVeto Chld in agreement DATA MC


Yield expected from calculations for PVeto Chld 40-70
~ 4.23 e+06

Ampli $=2.2 \mathrm{e}+05$ entries/0.1ns
Mean -0.008 ns
Sigma 0.15 ns
Area $=$ sqrt(2m) Ampli Sigma $/$ BinWidth ~8.2 e+05

## AreaScaled~3.4 e+06

expected $\sim 4.23$ e+06


## DATA

TimeDifferenceCIPVetoSAC_ChId40_70


## expected from

analytic calculation ~ 4.23 e+06

Ampli $=9.99 \mathrm{e}+04 \sim 10 \mathrm{e}+05$ entries/0.1ns Mean 0.12 ns Sigma 0.63 ns Area $=$ sqrt(2m) Ampli Sigma $/$ BinWidth ~1.6 e+06

Is it possible to give a first estimation of the efficiency?
SAC Efficiency ~ 40\%?

## Looking at the HEP Veto..

## SAC digi 4ns




## Conclusions

The Bremsstrahlung yield can be calculated subtracting the occupancy PVeto plot with and without the target, both for DATA and MC.

From a preliminary calculation, MC and DATA yields are not so different.

- Considering the SAC cluster spectrum in coincidence with every Chld of the PVeto
- Studying the spectrum of the sum of the positron and the photon in time coincidence
- Studying the time difference between SAC and PVeto Clusters in the Chlds range in agremeent of MC DATA


## Good tuning MC DATA for SAC needed for this last chance

A preliminary study on the integration time for the Sac was also performed, to tune the MC and DATA

## Backup

DATA

energySACVsChldPVeto_Clus_inTime_1ns_thr1MeV_Chld40_70


SumSACPVetoVsChldPVeto_Clus_inTime_1ns_thr1MeV_Chld40_70


PositronEnergy_DeltaTime1ns_thr1MeV_Chld40_70


## MC digi 1ns


energySACVsChldPVeto_Clus_inTime_1ns_thr1MeV_Chld40_70


SumSACPVetoVsChldPVeto Clus inTime 1 ns thr1MeV Chld40 70


PositronEnergy_DeltaTime1ns_thr1MeV_Chld40_70

 ımSACenergyPositronEnergy_DeltaTime1ns_thr1MeV_ChId40_70
energySACVsChldPVeto_Clus_inTime_1ns_thr1MeV_Chld40_70


SumSACPVetoVsChldPVeto_Clus_inTime_1ns_thr1MeV_Chld40_70


PositronEnergy_DeltaTime1ns_thr1MeV_Chld40_70



HEPVeto_Chld_vs_PVeto_Chld_inTime


## Correlation with PVeto ChId 73-89

xmin 73 xmax 89 Positron Energy min 314.667 max 432.301 Egamma min 57.6994 Egamma max 175.333
Ngamm TOT MC 9.28307e+06 NPOTMC 9.3e+09

## Correlation with PVeto ChId 76-88

xmin 76 xmax 88 Positron Energy min 335.257 max 424.385 Egamma min 65.6153 Egamma max 154.743
Ngamm TOT MC 7.2e+06 NPOTMC
$9.3 \mathrm{e}+09$

