

Tuning MC and DATA for VETO

F. Oliva on behalf of the PADME Lecce group

OUTLINE

A first try to calculate the yield of Bremsstrahlung was done but MC and DATA were not in agreement.

A step back was needed to understand better MC for PVeto and consequently the DATA to allow the tuning DATA/MC

Step 0 Understand energy release in Veto for MC

Single Positron simulations

Step 1

MC simulation from Target and from BeW Step 2

DATA

Step 3

Comparison DATA/MC and tuning

Step 0 - Single Positron MC

What is the energy release at most in Veto?

E=50 MeV

A mip releases in the finger ~2.3 MeV at most

Federica Oliva

Single Positron MC

Single Positron Momentum 0.0001 MeV

Momentum Spread Uniform distribution [0, 500] MeV — To hit every single finger in the PVeto with a unique simulation

Low Clusterization Thrs Thr Seed 0.1/Hit 0.1, deltaTimeClusters 1ns

100 k events

VC on / VC off

Federica Oliva

...focusing on Vacuum Chamber on

Federica Oliva

Step 1 MCs comparison

MC 23 k POT, beamFromBeW 250 ns bunch length digi 1ns MC 23 k POT, beamFromTarget 250 ns bunch length digi 1ns

Federica Oliva

Step 2 DATA run_000000_20190724_152634_reco_00_009 1 k events Thr Hit 2.5mV / Thr Seed 2.5 mV DeltaTimeClusters 5ns

Federica Oliva

Federica Oliva

Occupancy varying deltaTime Clusters for MC and DATA

The delta time cluster was enlarged for MC to emulate the time integration of the Veto front-end response.

PVeto_Chld_Clus

A change in the MC digi time is maybe needed to compare MC and DATA. At the moment the digi time for MC is set at 5 ns in the develop.

Comparison between DATA and MC production with digi time = 20 ns

Step 3MC digi 20 ns delta cluster time 5ns / DATA delta cluster time 5nsMC DATA comparisonFirst try1 k events

Emulating the rising time of the signal for Veto

Federica Oliva

Conclusion

- A comparison between MC vs DATA for veto at hits and clusters level is underway in order to understand occupancy and rate of beam background and bremsstrahlung.
- Simulated single positrons with flat energy distributions from 0-500 MeV allowed to understand hit and cluster energy spectrum and cluster size along z:
 - linear increase of energy peak and cluster size with z
 - a positron shadow for Veto from chld 1 to 10 is clearly visible for low energy single positrons due to fringe filed and vacuum chamber wall.
- Simulated sample of 23000 positrons per bunch without and with the beamline+BeW clearly show that the positron rate on the Veto is dominated by the beam-line+BeW material and not from bremsstrahlung from target.

-The simulation of the beamline+BeW show a positron shadow for Veto from chld 1 to 10 with significant rate and flat energy spectrum -The simulation of the beamline+BeW show a sharp increase of rate for chld 70

- July data showed an energy spectrum, a cluster size and an occupancy semi-qualitative similar to MC only after hit digitization and clusterization parameters tuning.
- Tuning between MC and DATA is still underway.