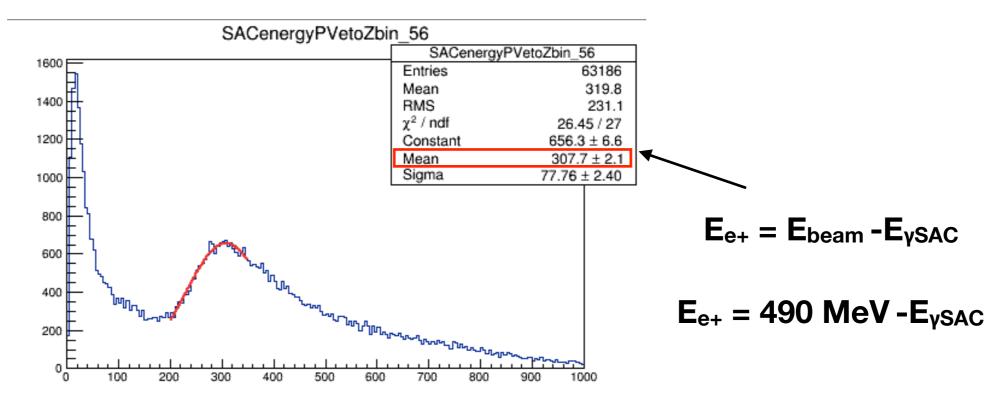


Update on Bremmstrahlung studies

F. Oliva on behalf of the PADME Lecce group


PADME internal Meeting, 29 th November 2019

Use Bremsstrahlung candidate events to check magnetic field

energySACVsZPVeto_Clus_inTime

Evaluate the photon energy from Single SAC cluster energy spectrum ..

Fit not good

DATA

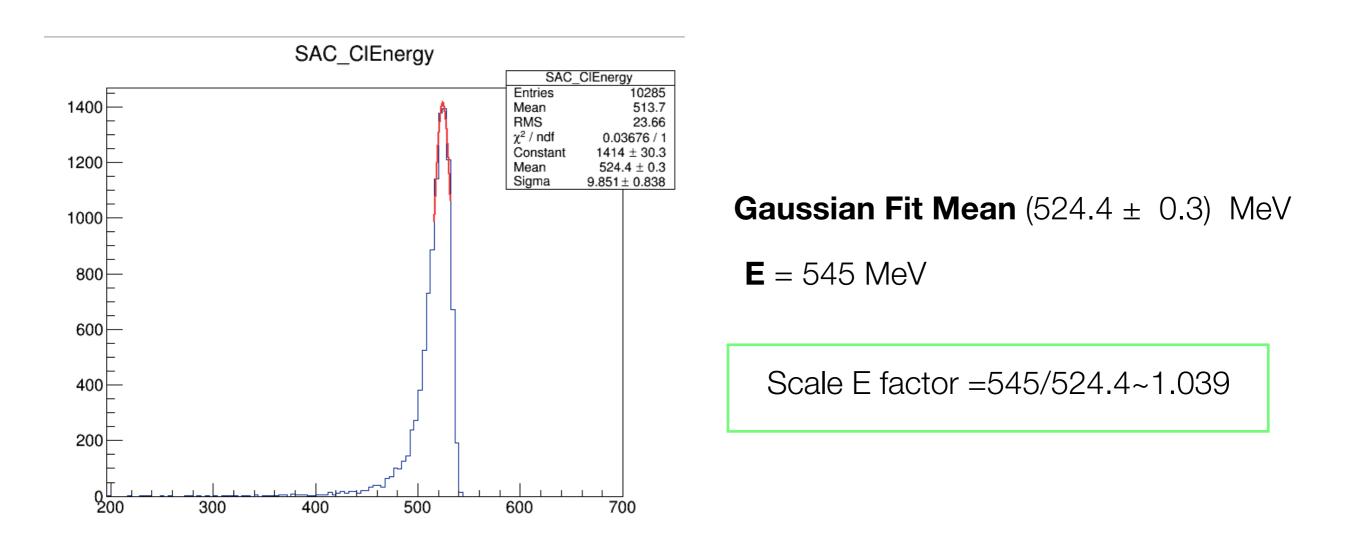
Chlo	Esac Z	Chlo	Ee+	Ζ	Chld	E _{e+}	Ζ	Chld	Esa	с	Ζ
0	412.856 -477.433	0	77.1437 -47	7.433	0	250.05	- 477. 433	0	239.95	-477.	433
1	305.469 -466.567	1	184.531 -460		1		- 466. 567	1	237.615	-466.	567
2	168.29 -455.7	2	321.71 -45		2	259.063		2	230.937	-455.	7
3	422.039 -444.833	3	67.9612 - 444		3		- 444.833	3	253.212	-444.	833
4	422.45 -433.967	4	67.5496 -433	3.967	4		-433.967	4	238.956	-433.	967
5	414.066 -423.1	5	75.9336 -423	3.1	5	274.918		5	215.082	-423.	1
6	381.508 -412.233	6	108.492 -412	2.233	6		-412.233	6	240.626	-412.	233
7	375.131 -401.367	7	114.869 -40	1.367	7		-401.367	7	258.346	-401.	367
8	418.655 -390.5	8	71.3452 -390	0.5	8	199.467	-390.5	8	290.533	-390.	5
9	432.487 -379.633	9	57.5134 -379	9.633	9	209.286	-379.633	9	280.714	-379.	633
10	430.27 -368.767	10	59.7302 -368	8.767	10	225.34	-368.767	10	264.66	-368.	767
11	424.45 -357.9	11	65.5504 -35	7.9	11	170.162	-357.9	11	319.838	-357.	9
12	244.089 -347.033	12	245.911 -342	7.033	12	115.638	-347.033	12	374.362		
13	404.466 -336.167	13	85.5338 -336	6.167	13	54.6033	-336.167	13	435.397		
14	405.962 -325.3	14	84.0383 -32	5.3	14	41.7315	-325.3	14	448.268		
15	409.82 -314.433	15	80.1803 -314	4.433	15	36.4005	-314.433	15	453.599		
16	412.219 -303.567	16	77.7806 -303	3.567	16	35.7773	-303.567	16	454.223		
17	412.383 -292.7	17	77.617 -292	2.7	17	35.1945	-292.7	17	454.806		
18	410.175 -281.833	18	79.8255 -28	1.833	18	37.7516	-281.833	18	452.248		
19	408.861 -270.967	19	81.1391 -270		19	40.8684	-270.967	19	449.132		
20	409.876 -260.1	20	80.1237 -260		20	42.1503	-260.1	20	447.85		
21	410.813 -249.233	21	79.1866 -249		21	40.3268	-249.233	21	449.673		
22	407.338 -238.367	22		8.367	22		-238.367	22	449.813		
23	403.662 -227.5	23	86.338 -22		23		-227.5	23	443.728		
24	397.022 -216.633	24	92.9777 -210		24	50.3301	-216.633	24	439.67		
25	393.316 -205.767	25	96.6843 -20		25		-205.767	25	438.862		
26	393.973 - 194.9	26	96.0272 - 194		26		-194.9 ·	26	436.82		
27	390.219 - 184.033	27	99.7814 - 184		27		-184.033	27	436.78		
28	385.217 - 173.167	28	104.783 - 173		28		-173.167	28	434.678		
29	381.886 - 162.3	29	108.114 -162		29		-162.3	29	431.877		
30	377.506 -151.433	30	112.494 -15	1.433	30	60.713	- 151. 433	30	429.287	- 151.	433

DATA

Chld	E _{sac} Z	Chld	E _{e+}	Ζ	Chlo	Ee+ Z	Chl	d E _{sac} Z
31	376.096 -140.567	31	113.904	-140.567	31	62.9694 -140.567	31	427.031 -140.567
32	373.626 -129.7	32	116.374	-129.7	32	65.8742 - 129.7	32	424.126 -129.7
33	369.783 -118.833	33	120.217	-118.833	33	69.1263 -118.833	33	420.874 -118.833
34	364.964 -107.967	34	125.036	-107.967	34	74.5049 -107.967	34	415.495 -107.967
35	362.771 -97.1	35	127.229	-97.1	35	81.9334 -97.1	35	408.067 -97.1
36	357.278 -86.2333	36	132.722	-86.2333	36	87.5028 -86.2333	36	402.497 -86.2333
37	352.532 -75.3667	37	137.468	-75.3667	37	90.7477 -75.3667	37	399.252 -75.3667
38	351.44 -64.5	38	138.56	-64.5	38	93.0406 -64.5	38	396.959 -64.5
39	350.316 -53.6333	39	139.684	- 53. 6333	39	96.5603 -53.6333	39	393.44 -53.6333
40	343.504 -42.7667	40	146.496	-42.7667	40	98.1511 -42.7667	40	391.849 -42.7667
41	340.857 -31.9	41	149.143	-31.9	41	102.275 -31.9	41	387.725 -31.9
42	334.179 -21.0333	42	155.821	-21.0333	42	107.504 -21.0333	42	382.496 -21.0333
43	329.662 -10.1667	43	160.338	-10.1667	43	116.244 -10.1667	43	373.756 -10.1667
44	324.064 0.7	44	165.936	0.7	44	118.933 0.7	44	371.067 0.7
45	320.872 11.5667	45	169.128	11.5667	45	121.904 11.5667	45	368.096 11.5667
46	317.971 22.4333	46	172.029	22.4333	46	126.977 22.4333	46	363.023 22.4333
47	312.05 33.3	47	177.95	33.3	47	133.632 33.3	47	356.368 33.3
48	306.924 44.1667	48	183.076	44.1667	48	138.01 44.1667	48	351.99 44.1667
49	304.046 55.0333	49	185.954	55.0333	49	141.067 55.0333	49	348.933 55.0333
50	299.114 65.9	50	190.886	65.9	50	146.033 65.9	50	343.967 65.9
51	293.559 76.7667	51	196.441	76.7667	51	150.537 76.7667	51	339.463 76.7667
52	291.055 87.6333	52	198.945	87.6333	52	158.922 87.6333	52	331.078 87.6333
53	284.773 98.5	53	205.227	98.5	53	169.076 98.5	53	320.924 98.5
54	282.032 109.367	54	207.968	109.367	54	172.049 109.367	54	317.951 109.367
55	274.582 120.233	55	215.418	120.233	55	173.928 120.233	55	316.072 120.233
56	269.694 131.1	56	220.306	131.1	56	181.914 131.1	56	308.086 131.1
57	265.05 141.967	57	224.95	141.967	57	186.95 141.967	57	303.05 141.967
58	260.196 152.833	58	229.804	152.833	58	191.514 152.833	58	298.486 152.833
59	254.071 163.7	59	235.929	163.7	59	196.092 163.7	59	293.908 163.7
60	249.177 174.567	60	240.823	174.567	60	211.239 174.567	60	278.761 174.567

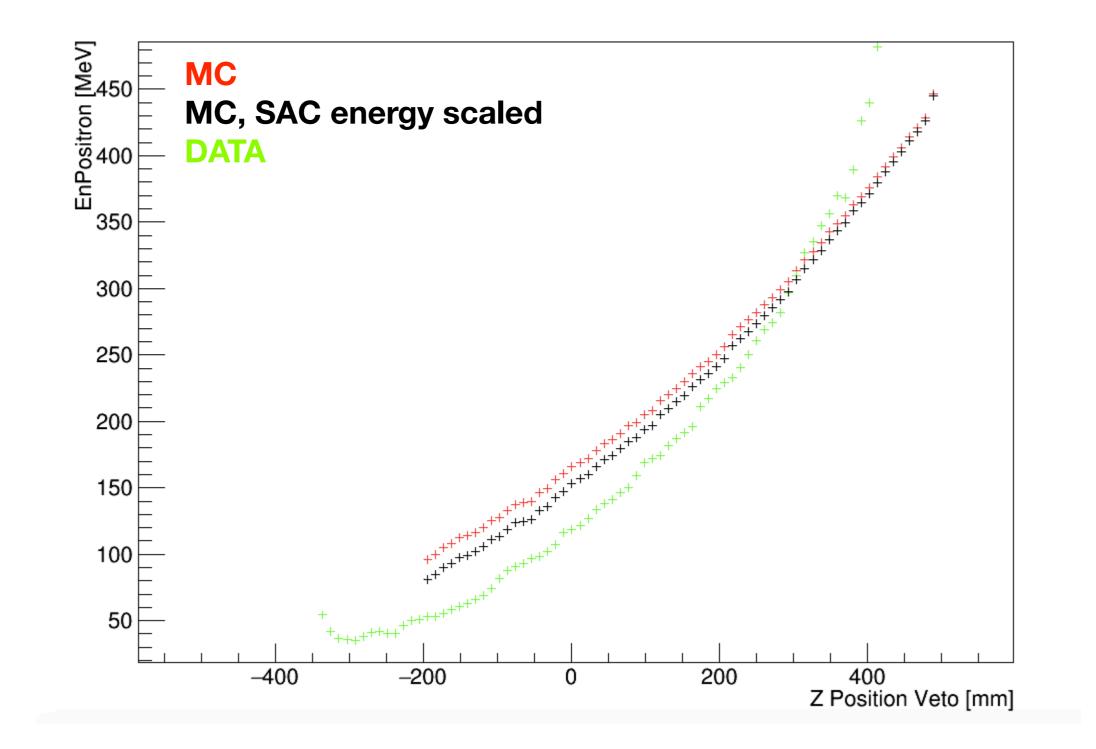
DATA

Chld	E sac	Z	Bin	E _{e+}	Ζ	Chld	E _{e+}	Ζ	Chld	E sac	Ζ	
61	244.769	185.433	61	245.231	185.433	61	217.261	185.433	61	272.739	185.433	
62		196.3			196.3	62		196.3	62	265.656	196.3	
63	233.456	207.167	63	256.544	207.167	63	229.092	207.167	63	260.908	207.167	
64		218.033		265.584	218.033	64	233.206	218.033	64	256.794	218.033	
65	218.851	228.9	65	271.149	228.9	65	240.293	228.9	65	249.707	228.9	
66	213.796	239.767	66	276.204	239.767	66	250.209	239.767	66	239.791	239.767	
67	208.125	250.633	67	281.875	250.633	67	260.402	250.633	67	229.598	250.633	
68	202.479	261.5	68	287.521	261.5	68	269.064	261.5	68	220.936	261.5	
69	196.67	272.367	69	293.33	272.367	69	274.239	272.367	69	215.761	272.367	
70	191.01	283.233	70	298.99	283.233	70	281.991	283.233	70	208.009	283.233	
71	184.814	294.1	71		294.1		296.881	294.1	71	193.119	294.1	
72	176.622	304.967	72	313.378	304.967	72	309.538	304.967	72	180.462	304.967	
73	168.414	315.833	73	321.586	315.833	73	326.916	315.833	73	163.084		
74	161.947	326.7	74	328.053	326.7	74	335.187	326.7	74	154.813		
75	155.729	337.567	75	334.271	337.567	75	346.977	337.567		143.023	337.567	
76	147.354	348.433	76	342.646	348.433	76	356.594	348.433	76	133.406	348.433	
77	141.212	359.3	77	348.788	359.3	77	370.133	359.3	77	119.867	359.3	
78	135.055	370.167	78	354.945	370.167	78	368.225	370.167	78	121.775	370.167	
79	126.751	381.033	79	363.249	381.033	79	389.596	381.033	79	100.404	381.033	
80	120.553	391.9	80	369.447	391.9	80	426.129	391.9	80	63.8714	391.9	
81	114.038	402.767	81	375.962	402.767	81	440.005	402.767	81	49.9949	402.767	
82	105.996	413.633	82	384.004	413.633	82	481.571	413.633	82	8.42922	413.633	
83	98.0345	424.5	83	391.966	424.5	83	513.133	424.5	83	-23.1332		424.5
84	90.882	435.367	84	399.118	435.367	84	533.811	435.367	84	-43.8115		435.367
85	84.033	446.233	85	405.967	446.233	85	541.437	446.233	85	-51.4366		446.233
86	75.593	457.1	86	414.407	457.1	86	543.318	457.1	86	-53.3178		457.1
87	69.2778	467.967	87	420.722	467.967	87	549.117	467.967	87	-59.117	467.967	
88	61.5597	478.833	88	428.44	478.833	88	545.224	478.833	88	- 55. 2242		478.833
89	43.3214	489.7	89	446.679	489.7	89	532.399	489.7	89	-42.399	489.7	

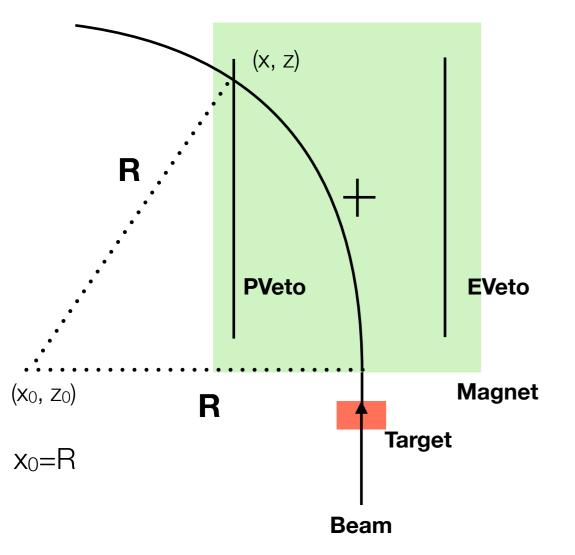

For **E**_{e+}~100 MeV

Child seed PVeto

Chld 27 for MC Chld 41 for DATA


STUDY OF THE SAC RESPONSE IN DATA AND MC

MC production 10k photons on SAC


All the following studies have been performed both for MC and MC rescaling SAC energy

POSITRON ENERGY VS Z PVETO POSITION

MC and DATA points are not in agreement

Analytic function

Starting from the circumference equation..

 $(x-x_0)^2 + (z-z_0)^2 = R^2$

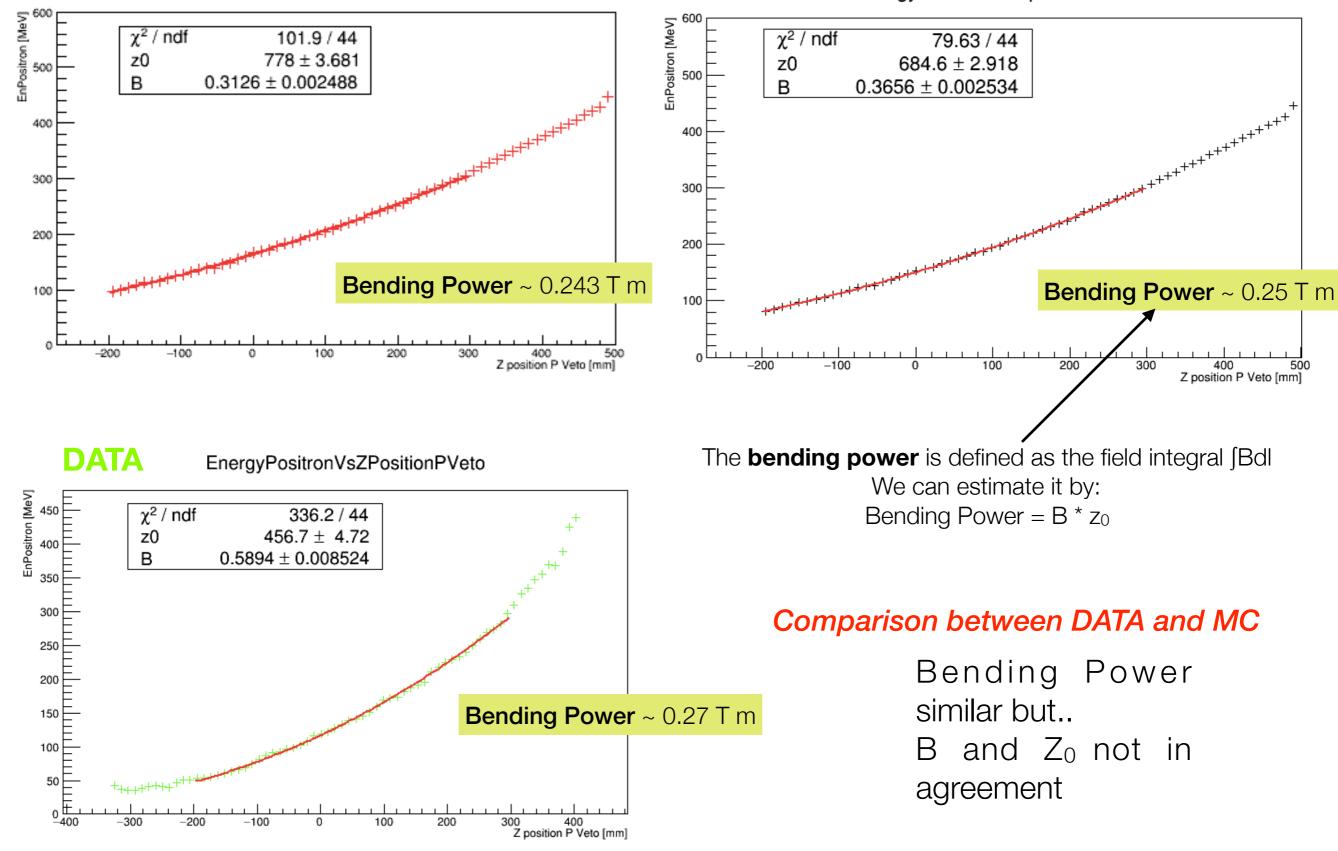
Knowing that R = p/0.3B

It's possible to write:

$$p = \frac{0.3 \text{ B}}{2x} [(z + z_0)^2 + x^2]$$

Where..

Z0 starting point of the magnetic field, with a possible component due to a mismatch of the Z PVeto position


X position PVeto

182.5 mm

EnergyPositronVsZpositionPVeto

MC, SAC energy scaled

EnergyPositronVsZpositionPVeto

SOME CONSIDERATIONS

Looking at the previous tables for a given positron energy value

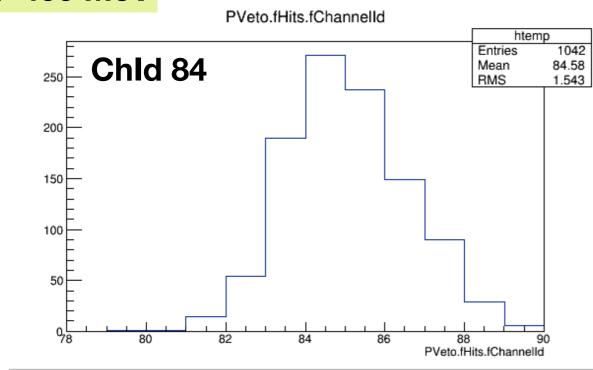
Chld seed PVeto

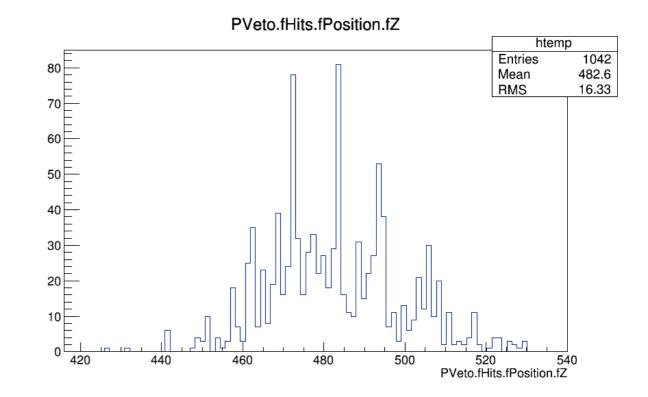
Ee+~100 MeV

Chld 27 for MC Chld 41 for DATA

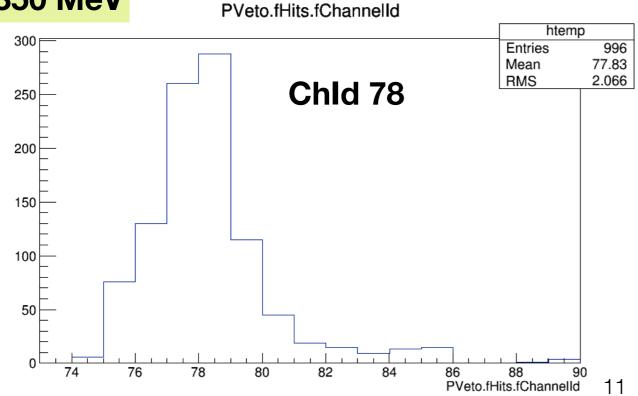
A positron of the same energy hits different PVeto fingers in MC and DATA

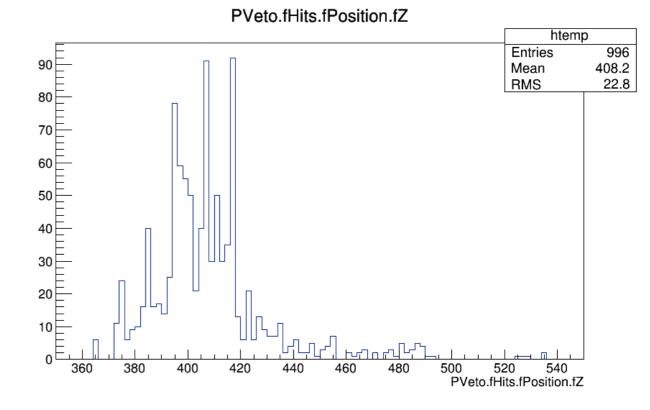
Check for MC done with MC single positron of different energies


Two possible explanations..

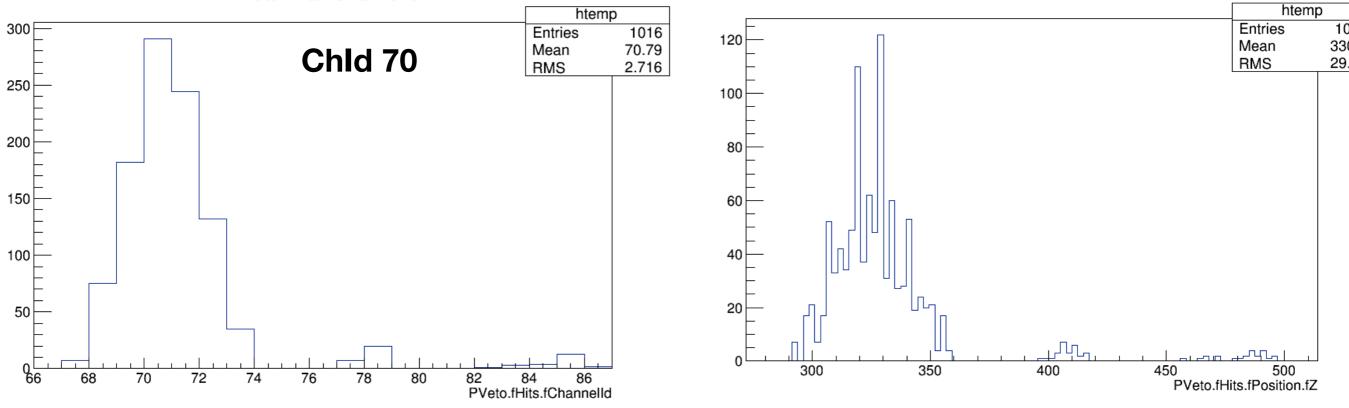

- **1.** The position of the fingers of the PVeto is different in DATA and MC or the starting point of the magnetic field is different between DATA and MC
- 2. SAC energy response is not the same of MC
 - addiction component due to pile up in DATA
 - SAC Energy Calibration

.. Is the previous indirect study trustable?

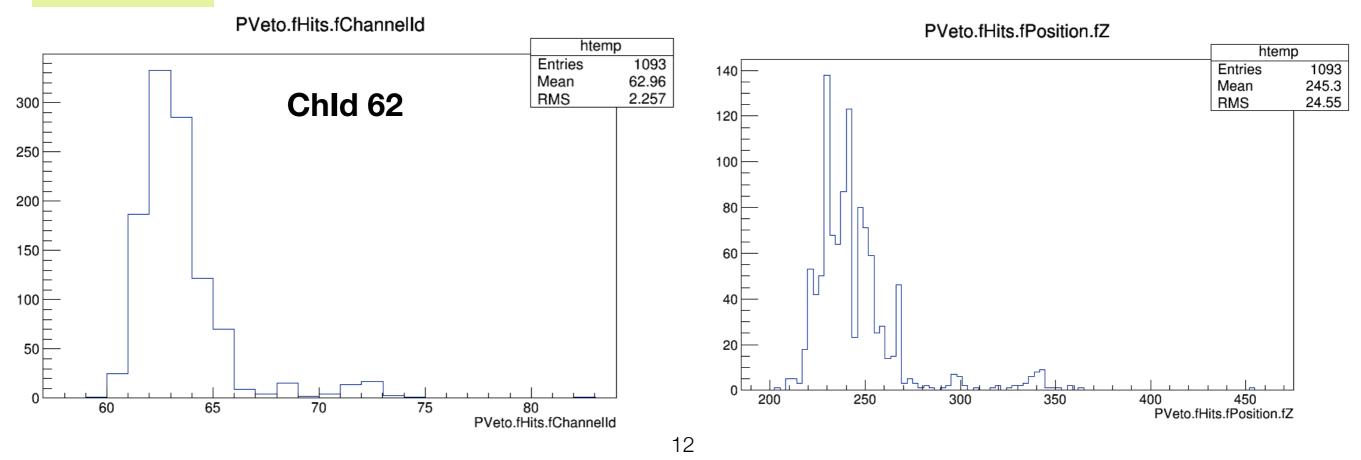

MC with single positron at different energy hitting the PVeto was studied, in order to check the Chld of the PVeto hit


MC HITS Channelld PVeto and Z Position

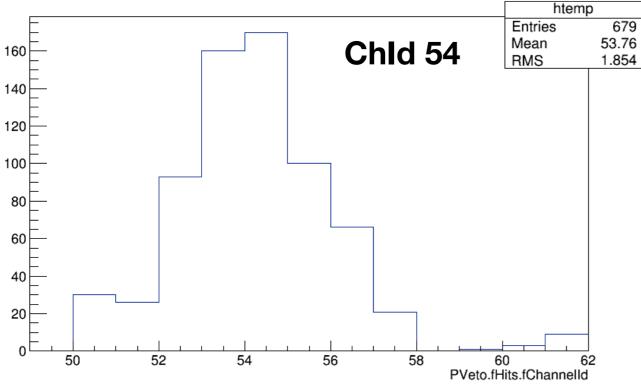
E=350 MeV

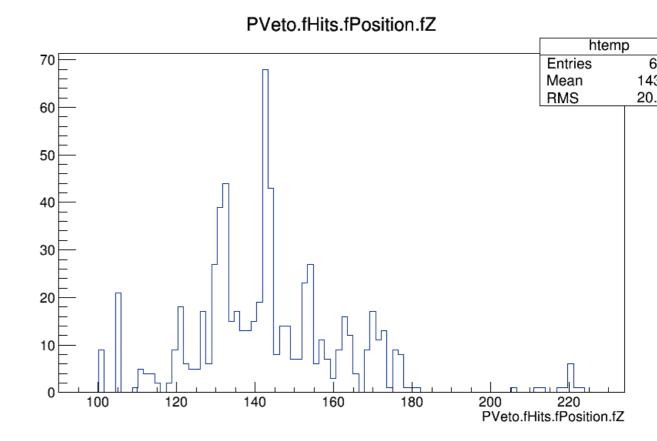


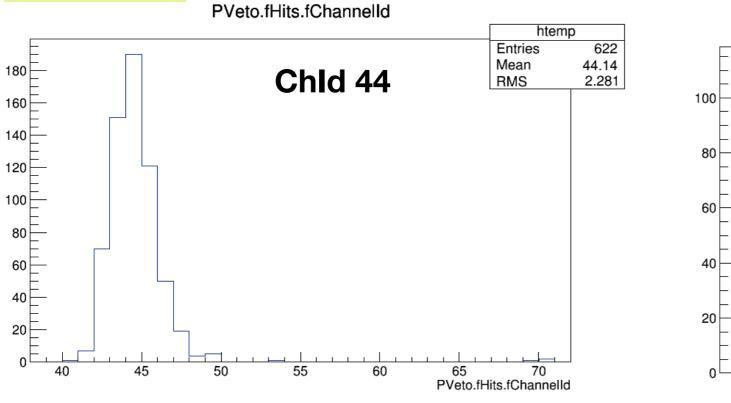
E=400 MeV



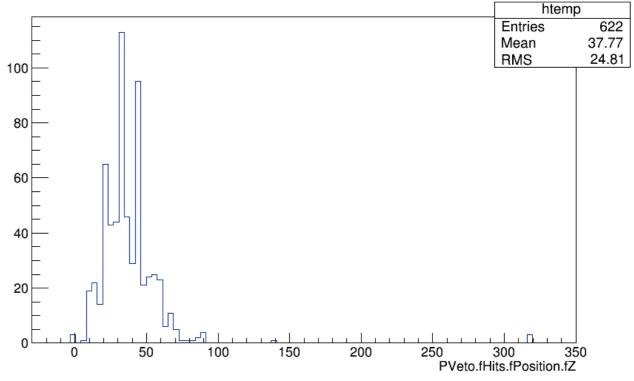
PVeto.fHits.fChannelId

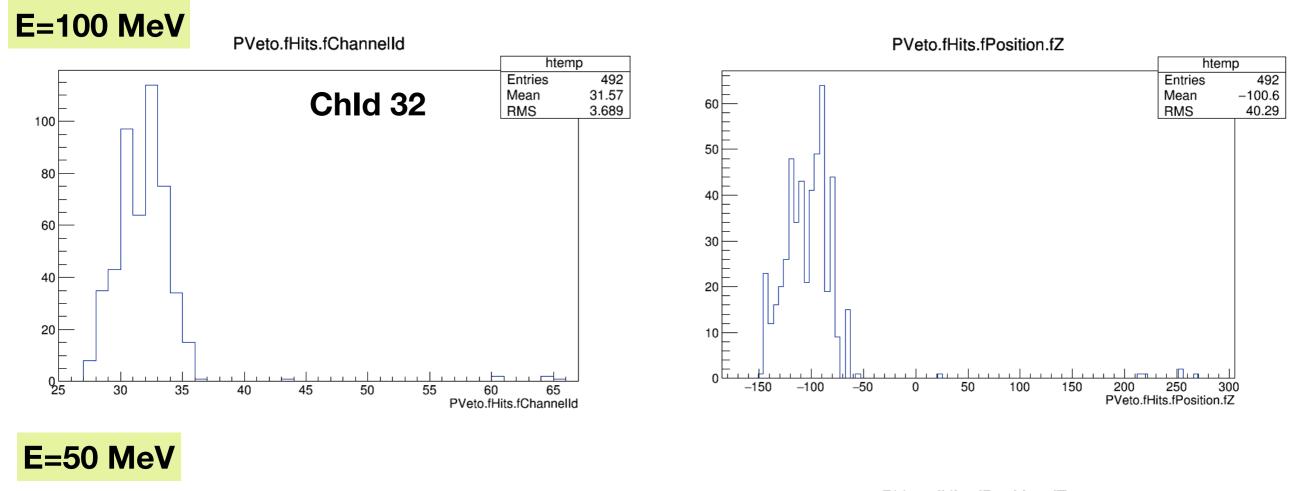



E=250 MeV

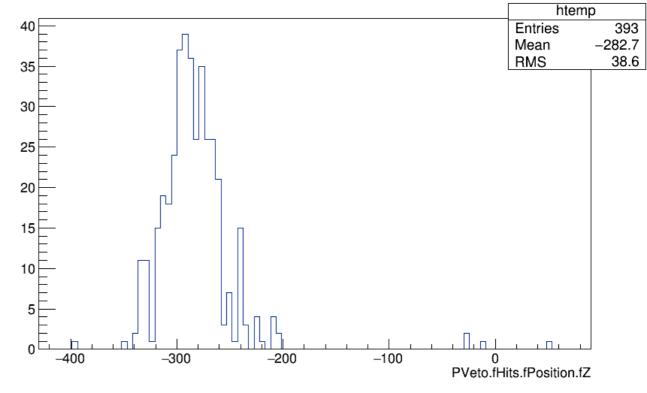


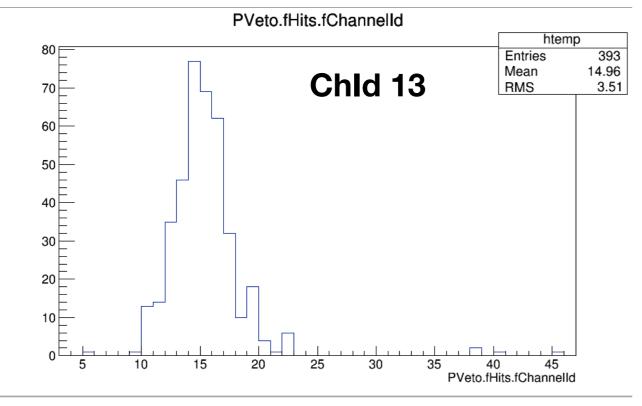
PVeto.fHits.fChannelId



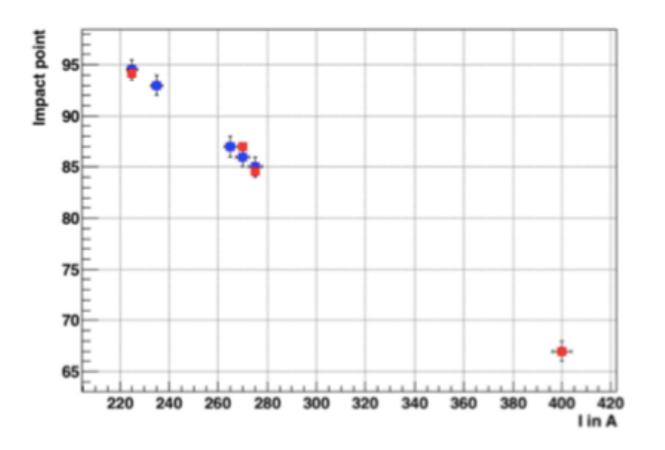


E=150 MeV




PVeto.fHits.fPosition.fZ

PVeto.fHits.fPosition.fZ

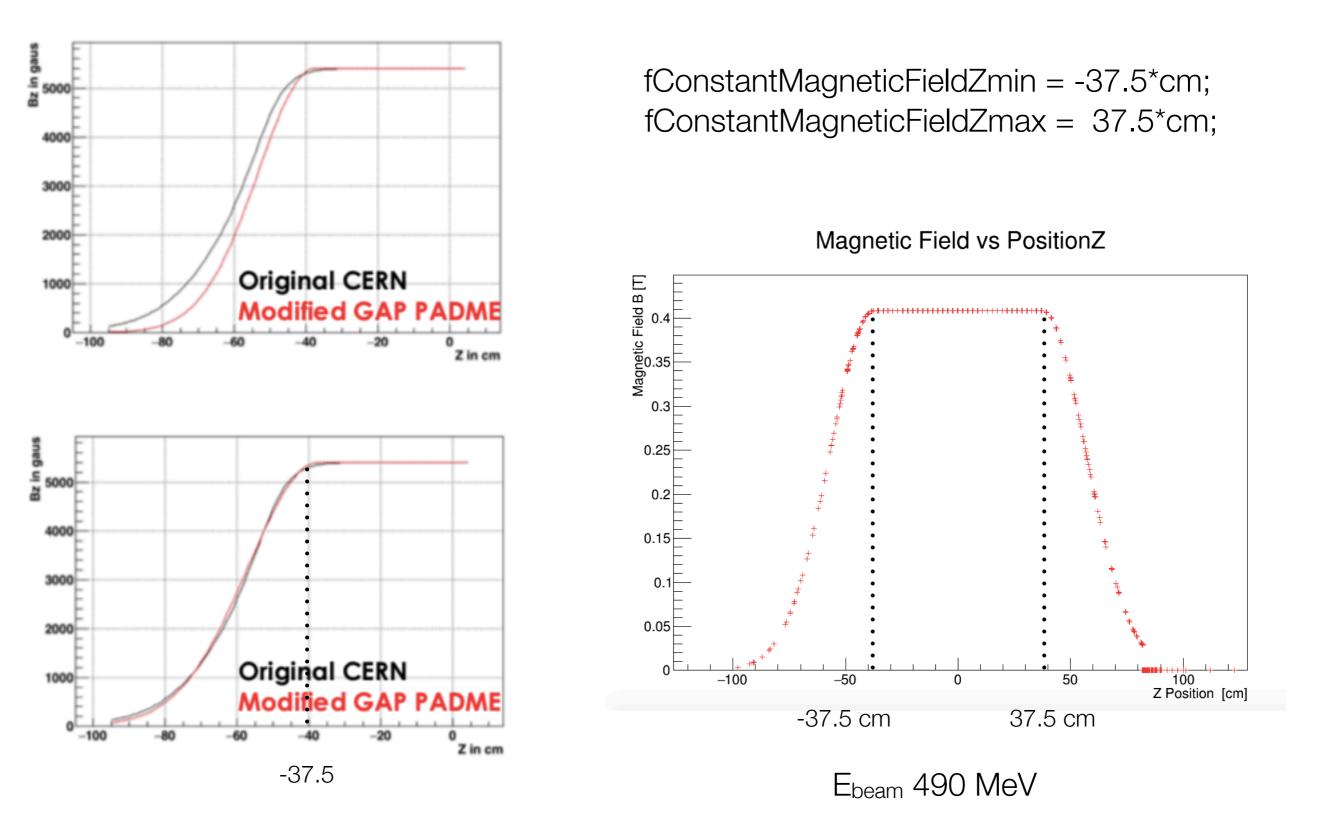


PVeto chld hit

E	MC Single Pos	MC	MC scaled om the previous ta	DATA
50	13	// (000
100	32	27	32	41
150	44	41	43-44	51
200	54	52	55	59
250	62	62	63	66
300	70	70-71	71	71-72
350	78	77	78	75-76
400	84	84	85	79-80

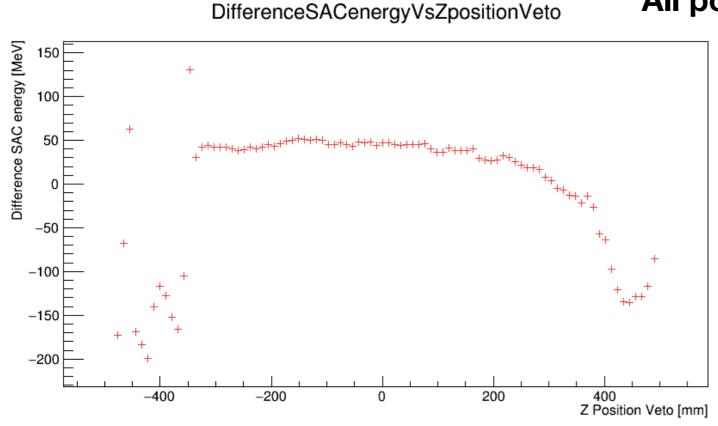
The study made with these MC production is in agreement with the MC, with SAC energy scaled

Looking back...November 2018

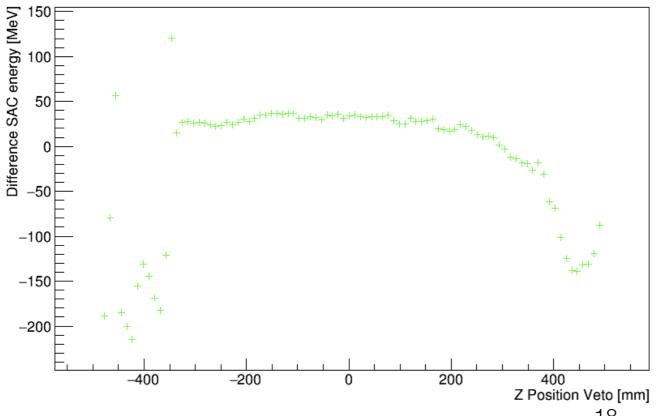

From this plot MC and DATA seem to be in agreement, considering the PVeto impact point

From Raggi's talk, 56th Scientific Committee Meeting

No need to think that something in the MC magnetic field has changed


A check was -anyway-performed

CHECK OF THE MAGNETIC FIELD MAP IN MC



The center of the magnetic field is set at 0 in PADME frame

STUDY OF THE SAC ENERGY BETWEEN DATA AND MC

DifferenceSACenergyVsZpositionVeto

All points inserted

PileUp~50 MeV

In the region -200 < Z < 200

~45.3 MeV from a linear fit

MC, SAC energy scaled

Pile Up ~ 30 MeV rescaling MC SAC energy Esac=Esac*1.039

Just trying... **Rescaling SAC energy for example of the 90%..**

EnPositron [MeV] χ^2 / ndf 778.9/44 708.6 ± 9.287 z0 500 в 0.3565 ± 0.007672 400 300 200 Preliminary 100 200 -400 400 -200 0 Z position P Veto [mm] EnergyPositronVsChannelld EnPositron [MeV] 400 DATA MC 350 300 250 Preliminary 200 t⁺⁺⁺⁺⁺ 150

100

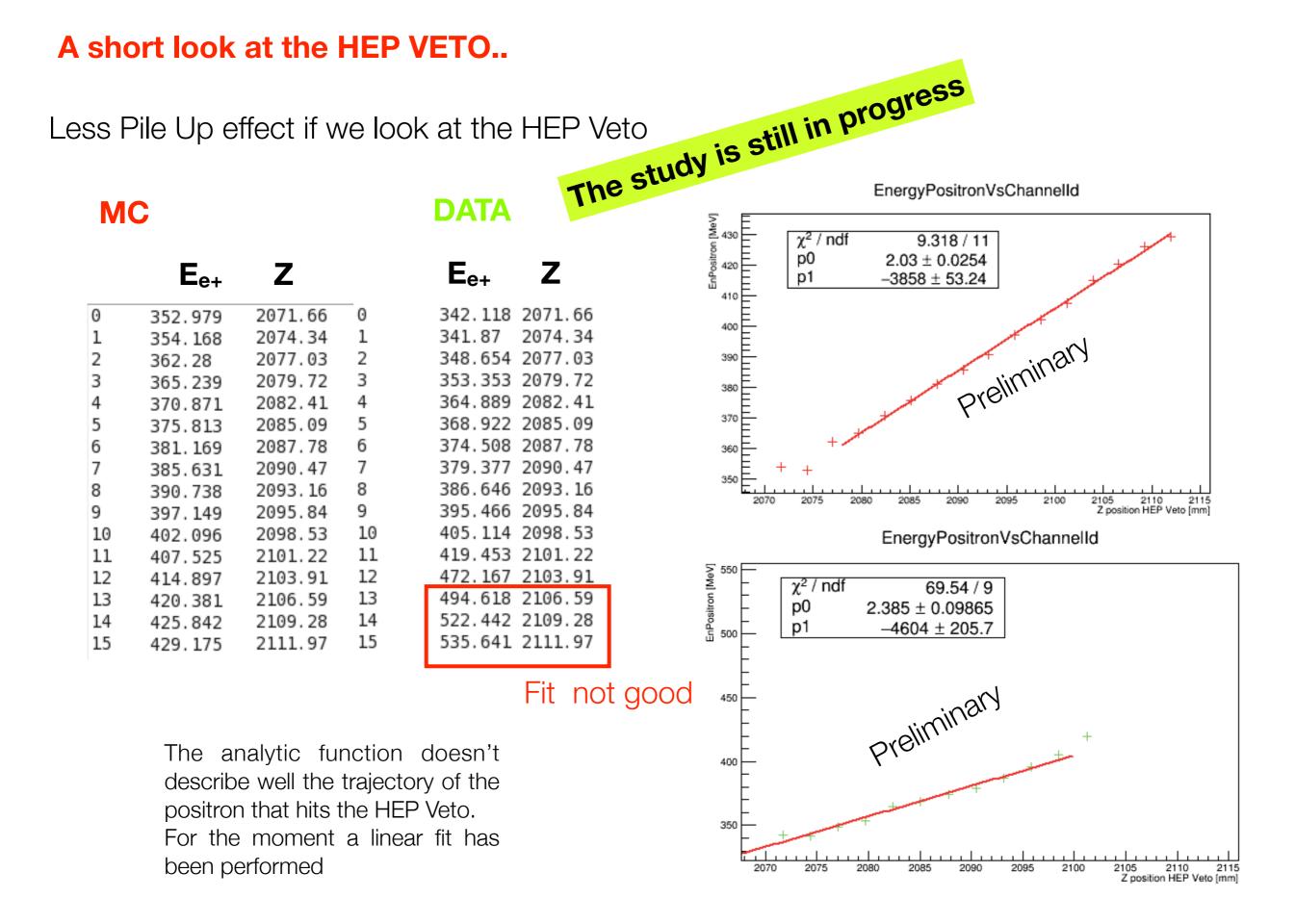
-200

-100

0

100

200


300

400

500 Z Position Veto [mm] In this way DATA parameters seem to be consistent

It's possible to put an addiction parameter due to the SAC energy scale, to better perform the study

EnergyPositronVsZPositionPVeto

CONCLUSIONS

 Looking at Bremmstrahlung events, a PVeto momentum calibration was performed, looking at MC and DATA

• Knowing the analytic function, it was possible to extract from this study the magnetic field value both for MC and DATA

• DATA and MC are not in agreement. The study is in progress to better understand the reason of this mismatch.