PSD Beam-Test Simulation:Output overview

Davide Serini, Francesca Alemanno and Corrado Altomare

Simulation Output File

- ROOT file:
 - Dynamic vectorial trees
 - Some structures are inherited from the «Tile-simulation»
 - New trees:
 - Event_Tree and Particles_Tree
 - The information are related to active volumes
 - Volume IDENTIFICATION:
 - Volume_ID : Describe the global element

Volume_ID					
Out of world	World	Wrapping*	Gap*	Scintillator	SiPMs*
-1	0	1	2	3	4

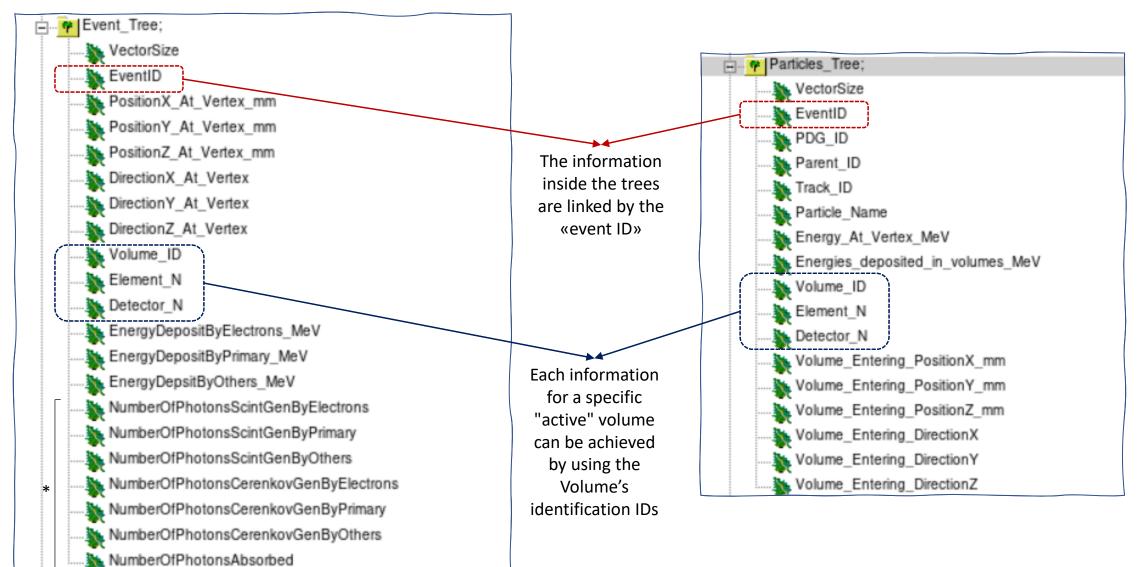
^{*}optional element

- Element_N: Identify the Scintillator
 - Reference number in the dataCard
- Detector_N : Identify the Detector (SiPMs)
 - Relevant only to identify the SiPMs
 - O N-1

Event_Tree and Particles_Tree: Overview

Event_Tree

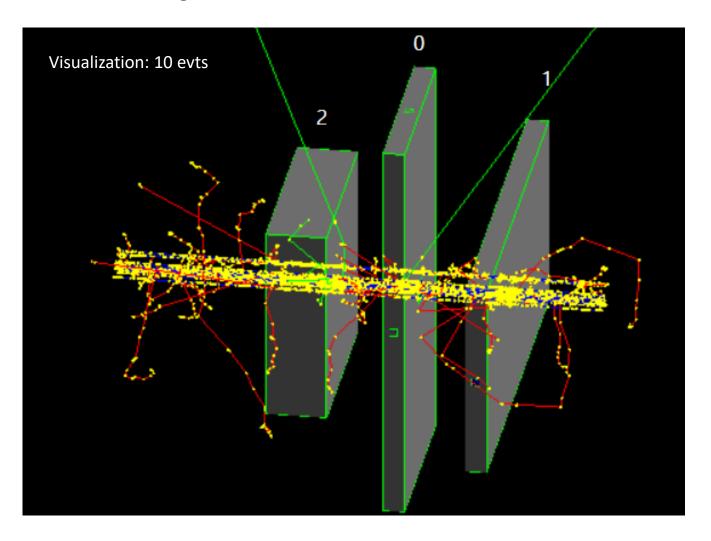
- Contains all the global information related to each event
 - One entry per event
 - Main information:
 - *Primary particle:*
 - *Vertex position/direction*
 - Energy deposited in each volume


Particles_Tree

- Contains all the information related to individual particle produced:
 - All particles are tracked
 - · This tree has a lot of entries per «physical event»
 - An EventID connect each particle to the "event" that generated it
 - An univoque TrackID identify each particle produced and a ParentID connect that particle to its particle parent
 - Main information (tracking):
 - *Particle types*
 - Generation point, Vertex Energy and parent
 - Energy deposited in each volume
 - Entry point and direction in each active volume

Event_Tree and Particles_Tree: Structure

Event_Tree Structure


Particles_Tree Structure

^{*} Optical processes not supported anymore ==> computational time-consuming reasons

Simple example (1)

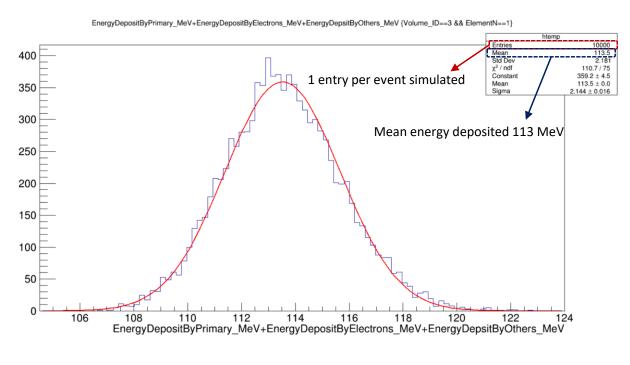
- 10000 evts with C12 ions 400 MeV/u
- We have used the default Scintillator dataCards (example in git)
- We have changed the GPS dataCard

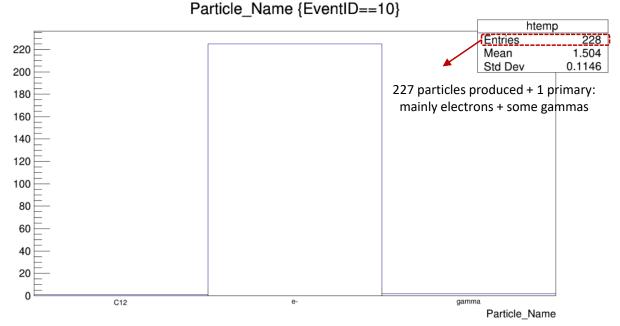
GPS DataCard

```
/gps/particle ion
/gps/ion 6 12  # Carbon Ions
/gps/pos/type Beam
/gps/pos/centre 0 0 10 cm
/gps/pos/radius 5 mm
/gps/pos/sigma_r 5 mm
/gps/ang/type beam2d
/gps/ang/sigma_r 0.1 mrad
/gps/ene/type Mono
/gps/energy 4800 MeV  # 400 MeV/u
```

Simple example (2)

1. Total Energy deposited by all particles in a Scintillator (from Event_Tree)

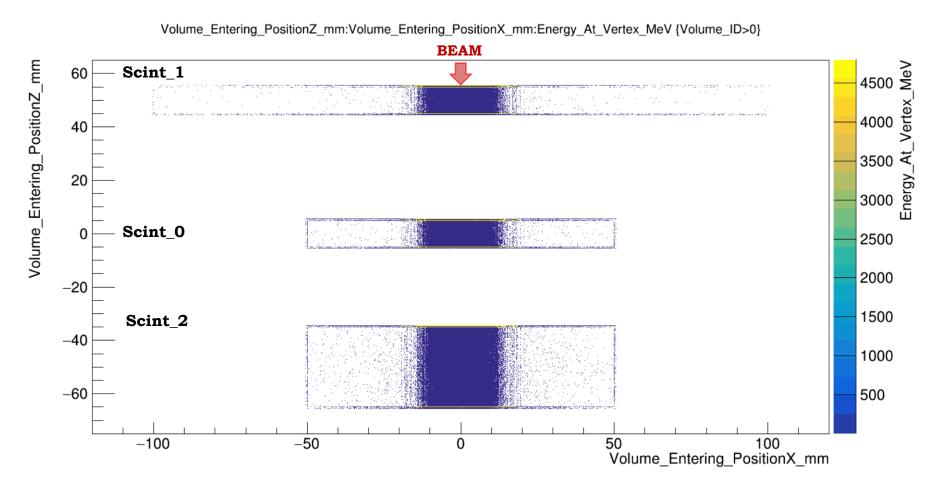

>> Event_Tree->Draw("EnergyDepositByPrimary_MeV+EnergyDepositByElectrons_MeV+EnergyDepositByOthers_MeV","Volume_ID==3 && ElementN==1")


- Volume_ID == 3 indicates that we want to select a Scintillator
- ElementN == 1 indicates that we want to select Scintillator number 1

2. All particles produced during a specific event simulated (from Particles_Tree)

>> Particles_Tree->Draw("Particle_Name","EventID==10","")

EventID == 10 select the Event number 10


Simple example (3)

3. The entry or generation positions for all particles produced and their vertex energies:

• This is an example of particle tracking capability from Particles_Tree

>> Particles_Tree->Draw("Volume_Entering_PositionZ_mm:Volume_Entering_PositionX_mm:Energy_At_Vertex_MeV","Volume_ID>0","colz")

Volume_ID > 0 indicates that we want to see only the «active volumes» (Volume_ID==0→world)

Conclusion

- We store the simulation results in a dynamic way using two ROOT trees in which the user can easily have access
 - The Event_Tree contains all the "global" information
 - The Particles_Tree contains all the information to track all particle produced
 - These information are linked by the «EventID»
 - These information are stored by referring to «active volumes» that can be identify by their
 Volume's identification IDs:
 - Volume_ID identify the global element (World, Wrapping, Gap, Scintillator, SiPM)
 - ElementN identify the specific scintillator (the ref. number is assigned by dataCard)
 - DetectorN identify the detector number (SiPM): 0 N-1

We would like to maintain and improve this simulation, so all feedback and suggestion are very welcome!!