(NN 6 Geantd G%T

Interaction with the Geant4

!'_ kernel — part 1

.. User classes (cont'ed)

i A itialization At execution
i G4VUserDetectorConstruction G4VUserPrimaryGeneratorAction

|

|

| o

| G4VUserPhysicslList G4UserRunAction*
|

I G4UserEventAction

G4VUserActionInitialization

G4UserStackingAction

G4UserTrackingAction

G4UserSteppingAction

Local: an instance of each action

class exists for each thread.
(*) Two RunAction's allowed: one for master
and one for threads

Global: only one instance exists in
memory, shared by all threads.

iOutIook

= Run, Event, Track, ...
= a word about multi-threading

= Optional user action classes

= Command-based scoring

= Accumulables

= Analysis tools (detached slides)

!'_ Part I: The main ingredients

Geant4 terminology: an

icverview

= The following keywords are often used in
Geant4

= Run, Event, Track, Step

= Processes: At Rest, Along Step, Post Step
= Cut (or production threshold)

= Worker/master thread (for MT)

iRun, Event and Tracks

Run

Event 1 - - -

Event 2

Event 3 " " ack3 | tracka

The Event (G4Event)

An Event is the basic unit of simulation in Geant4

At the beginning of processing, Erimary tracks are generated
and they are pushed into a stac

A track is popped up from the stack one-by-one and ‘tracked’
= Secondary tracks are also pushed into the stack

= When the stack gets empty, the processing of the event is
completed

G4Event class represents an event. At the end of a successful
event it has:

» List of primary vertices and particles (as input)

= Hits and Trajectory collections (as outputs)
G4EventManager class manages the event
G4UserEventAction is the optional User hook

iThe Run (G4Run)

= As an analogy with a real experiment, a run of Geant4
starts with ‘Beam On’
= Within a run, the User cannot change
= The detector setup
= The physics setting (processes, models)

= A Run is a collection of events with the same detector
and physics conditions

= At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

= The G4 (MT) RunManager class manages the
processing of each Run, represented by:

= G4Run class
= G4UserRunAction for an optional User hook

iThe Track (G4Track)

The Track is a snapshot of a particle and it is represented
by the G4Track class

= It keeps ‘current’ information of the particle (i.e. energy,
momentum, position, polarization, f’

« It is updated after every step
The track object is deleted when
= It goes outside the world volume
= It disappears in an interaction (decay, inelastic scattering)

= It is slowed down to zero kinetic energy and there are no
'AtRest’ processes

« It is manually killed by the user

No track object persists at the end of the event
G4ATrackingManager class manages the tracking
G4UserTrackingAction is the optional User hook

* G4TrackStatus

= After each step the track can change its state

= The status can be (red can only be set by the
User)

iThe Step (G4Step)

= G4Step represents a step in the particle
propagation
= A G4Step object stores transient information of the
step
= In the tracking algorithm, G4Step is updated each
time a process is invoked (e.g. multiple scattering)
= You can extract information from a step after the
step is completed, e.g. in
= ProcessHits () method of your sensitive detector
(see later)

= UserSteppingAction () of your step action class
file (see later)

iThe Step in Geant4

= The G4Step has the information about the two points
(pre-step and post-step) and the ‘delta’ information
of a particle (energy loss on the step,)

= Each point knows the volume (and the material)

= In case a step is limited by a volume boundary, the end
Boint physically stands on the boundary and it logically
elongs to the next volume

Post-step point

Pre-step point

s G4UserSteppingAction is the optional User hook

iThe G4Step object

= A G4Step oObject contains

= The two endpoints (pre and post step) so one has
access to the volumes containing these endpoints

=« Changes in particle properties between the points
= Difference of particle energy, momentum,
= Energy deposition on step, step length, time-of-flight, ...
= A pointer to the associated G4Track object

= Volume hierarchy information

= G4Step provides many Get... methods to access
information or object istances
» GA4StepPoint* GetPreStepPoint(),

iThe geometry boundary

= To check if a step ends on a boundary, one may
compare if the physical volume of pre and post-step
points are equal

= One can also use the step status

= Step Status provides information about the process that
restricted the step length

» It is attached to the step points: the pre has the status
of the previous step, the post of the current step

« If the status of POST is £GeometryBoundary the step
ends on a volume boundary (does not apply to word
volume)

= To check if a step starts on a volume boundary you can
also use the step status of the PRE-step point

iStep concept and boundaries

/Volumc boundary \

step ends on boundary post—step
re—step it
tmint ' step starts on boundary /. P
pre—step point
{ step—status 18

?ggoﬁﬁdw post—step point fGeomBoundary

Example: parent track and
Process

if (track->GetTrackID() != 1)

{

G4cout << "Particle is a secondary" << G4endl;

if (track->GetParentID() == 1)
{

}

// Get process information

G4VProcess* creatorProcess = track->GetCreatorProcess();
G4String processName = creatorProcess->GetProcessName();
G4cout << "Particle was created by " << processName << G4endl;

}

G4cout << "But parent was a primary" << G4endl;

iExampIe: boundaries

G4StepPoint* preStepPoint = step -> GetPreStepPoint();
G4StepPoint* postStepPoint = step -> GetPostStepPoint();

// Use the GetStepStatus() method of G4StepPoint to get the status of the
// current step (contained in post-step point) or the previous step
// (contained in pre-step point):
if(preStepPoint -> GetStepStatus() == fGeomBoundary) {
G4cout << "Step starts on geometry boundary"” << G4endl;
}
if(postStepPoint -> GetStepStatus() == fGeomBoundary) {
G4cout << "Step ends on geometry boundary"” << G4endl;

}

// You can retrieve the material of the next volume through the
// post-step point:
G4Material* nextMaterial = step->GetPostStepPoint()->GetMaterial();

iExampIe: step "deltas"

MySensitiveDetector: :ProcessHits(G4Step* step, G4TouchableHistory*) {
// Total energy deposition on the step (= energy deposited by energy loss
// process and energy of secondaries that were not created since their
// process and energy of secondaries that were not created since their
// energy was < Cut):
G4double energyDeposit = step -> GetTotalEnergyDeposit();

// Difference of energy, position and momentum of particle between pre-
// and post-step point

G4double deltaEnergy = step -> GetDeltaEnergy();

G4ThreeVector deltaPosition = step -> GetDeltaPosition();

G4double deltaMomentum = step -> GetDeltaMomentum();

// Step length
G4double stepLength = step -> GetStepLength();

iExampIe: particle info

// Retrieve from the current step the track (after PostStepDolt of
// step is completed):
G4Track* track = step -> GetTrack();

// From the track you can obtain the pointer to the dynamic particle:
const G4DynamicParticle* dynParticle = track -> GetDynamicParticle();

// From the dynamic particle, retrieve the particle definition:
G4ParticleDefinition* particle = dynParticle -> GetDefinition();

// The dynamic particle class contains e.g. the kinetic energy after the step:
G4double kinEnergy = dynParticle -> GetKineticEnergy();

// From the particle definition class you can retrieve static
// information like the particle name:

G4String particleName = particle -> GetParticleName();

G4cout << particleName << ": kinetic energy of "
<< (kinEnergy / MeV) << " MeV" << G4endl;

Part II: Optional User Action

!'_ classes

iOptionaI user classes

= Five base classes with virtual methods the user may
override to step during the execution of the application
("user hooks")
= G4UserRunAction .
e.g. actions to be done

! G4UserEvent:Action. <@ : thc beginning and
= G4UserTrackingAction end of each event

=« G4UserStackingAction
= G4UserSteppingAction

= Default implementation (not purely virtual): do
nothing

= Therefore, override only the methods you need.

Multi-threaded processing of

i events

Master thread
|

[G4Run (100 evts)]

Worker 1

Worker 2

Worker 3

G4Run (33 evts)

e

G4Run (34 evts)

G4Run (33 evts)

Event 0 Event 33 Event 67
Event 32 Event 66 Event 99
v v v
Results Results Results

[G4Run::Merge() }/

v

[Results }

‘L User actions in MT mode

Masmrf@ o - -

7

/
READONLY

iG4UserRu nAction

void BeginOfRunAction (const G4Runt*)
void EndOfRunAction (const G4Runt*)
G4Run* GenerateRun ()

Uses:

= Book/output histograms and other analysis tools
= Custom G4Run with additional information
= Define parameters

/N

iG4UserEventAction

void BeginOfEventAction (const G4Event¥)
volid EndOfEventAction (const G4Ewvent¥)

Uses:
« Hit collection and event analysis
= Event selection

= Logging (e.g. output event number)

iG4UserStackingAction

G4ClassificationOfNewTrack
ClassifyNewTrack (const G4Track¥*)

void NewStage ()

void PrepareNewEvent ()

Uses:
= Pre-selection of tracks (~manual cuts)
= Optimization of the order of track execution

iG4UserTrackingAction

void PreUserTrackingAction (const
G4Track¥*)

void PostUserTrackingAction (const
G4Track¥*)

Uses:
= [rack pre-selection
sStore trajectories

iG4UserSteppingAction

void UserSteppingAction (const G4Step*)

Uses:
= Get information about particles
= Kill tracks under specific circumstances

iRegistration of user actions

= In multi-threading mode (and sequential),
objects of user action classes must be
registered to the G4 (MT) RunManager Via a
user-defined action initialization class

runManager->SetUserInitialization(
new MyActionInitialization);

= In sequential mode, the actions can a/so be
registered to the run manager directly (not
recommended)

iMyActionInitiaIization

s Register thread-local user actions

void MyActionInitialization::Build() const Also the primary

{ nerator
//Set mandatory classes / generato

SetUserAction(new MyPrimaryGeneratorAction());
/| Set optional user action classes
SetUserAction(new MyEventAction());
SetUserAction(new MyRunAction());

iMuItlpIe user actions

e GAMultiRunAction
* GAMultiEventAction
e GAMultiTrackingAction
e GAMultiSteppingAction
* no G4MultiStackingAction

auto multiAction = new G4MultiEventAction{ new MyEventActionl,
new MyEventAction2 };

//...

multiAction->push back (new MyEventAction3) ;

SetUserAction (multiAction) ;

Containers enabling to have multiple user actions of the
same “kind”, implemented as customized std::vector’s.

Part ITI: Command-based

!'_ scoring

i Command-based scoring

UI commands for scoring
- no C++ required,
apart from instantiating

int main() {

G4ScoringManager: : GetScoringManager () ;

G4ScoringManager in }
main ()

e Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

e Define mesh parameters

/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

* Define primitive scorers
/score/quantity/eDep <scorer_name>

currently 20 scorers are available

/score/mesh/boxsize <dx> <dy> <dz>

/score/quantity/cellFlux <scorer_name>

e Define filters
/score/filter/particle <filter_name>
<particle_list>
/score/filter/kinE <filter_name>
<Emin> <Emax> <unit>
currently 5 filters are available
e Qutput
/score/draw <mesh_name>
<scorer_name>
/score/dump,
/score/list

wirmnpr-1] | Dpen G L memesdes e 0] s wiengtier-10 [Openls L mrmseduales)

- i] - r
2= .."‘.:. '-{["' ';I-. f-rfl'_,. ..::' E
w01 [Open G LEmivediates)

!'_ G4analysis tools

(detached session)

iGeant4 analysis classes

= A basic analysis interface is available in Geant4 for
histograms (1D and 2D) and ntuples

= Make life easier because they are thread-safe
« ROOT is not! Manual text output usually not!
= No need to worry about the interference of threads

= Unique interface to support different output formats
= ROOT, AIDA XML, CSV and HBOOK

= Code is the same, just change one line to switch from
one to an other

= Everything done via G4AnalysisManager
= Singleton class - use Instance()
« UI commands available

i g4analysis

= Selection of output format is performed by including
a proper header file

= All the rest of the code unchanged
= Unique interface

#ifndef MyAnalysis h
#define MyAnalysis h 1

#include "g4root.hh"
//#include "g4xml.hh"
//#include "g4d4csv.hh" // can be used only with ntuples

#endif

A Advanced topic: It is possible to use more formats at the same time. See documentation.

800

600

400

200

96 97 98 99 100 101 102 103
Energy [MeV]

104

iOpen file and book histograms

#include "MyAnalysis.hh"

void MyRunAction: :BeginOfRunAction (const G4Run* run)

{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager: :Instance() ;
man->SetVerboselevel (1) ;

man->SetFirstHistoId (1) ; Start numbering of

histograms from ID=1

// Creating histograms
man->CreateHl ("h","Title", 100, 0., 800); ID=1
man->CreateHl ("hh","Title",100,0.,10); D=2

// Open an output file
man—>OpenFile("myoutput")i}_ Open output file
}

Fill histograms and write on

ifile

#include "MyAnalysis.hh"
void MyEventAction: :EndOfEventAction (const G4Run* aRun)

{

auto man = G4AnalysisManager: :Instance() ;
man->FillH1 (1, fEnergyAbs/MeV) ; ID=1
man->FillH1 (2, fEnergyGap/MeV) ; D=2

}

void MyRunAction: :EndOfRunAction (const G4Run* aRun)

{
G4AnalysisManager: :Instance () ->Write() ;

}

int main|()

{

G4AnalysisManager: : Instance () ->CloseFile() ;
}

‘L Ntuples

Voo NOOUTE, WDNERERO

N Y
AwNRroO

98.
100.
99.
101.
98.
101.
100.
100.
100.
100.
101.
99.
97.
100.

.5161753
0020355
0734469
3508677
2505954
9849841
1547644
8876748
3013861
6295882
4887681
6716567
1083093
3595776
7264612

0.739157031

.852812521
.863203688
.063452685
.030581054
.464509417
.121931704
.012068917
.852532119
.084122362
.021971662
.614222096
.776034456
.814378204
.408732803

0.014213165

.128640204
.277949199
.898594988
.736468229
.065372115
.203319254
.283410959
.520615895
.556967258
.317380892
.483530242
.203524549
.690615126
.278746667

i Ntuples support

= g4tool supports ntuples
= Any number of ntuples
= Any number of columns per ntuple
= Supported types are int/float/double

= For more complex tasks (e.g. full functionality
of ROOT TTrees) have to link ROOT directly

=« And take care of thread-safety

iBook ntuples

#include "MyAnalysis.hh"
void MyRunAction: :BeginOfRunAction (const G4Run* run)
{
// Get analysis manager
auto man = G4AnalysisManager: :Instance() ;
man-> SetFirstNtupleId(1l) Start numbering of
ntuples from ID=1
// Creating ntuple
man->CreateNtuple ("name", "Title"); ID=1
man->CreateNtupleDColumn ("Eabs") ;
man->CreateNtupleDColumn ("Egap") ;
man->FinishNtuple () ;

man->CreateNtuple ("name2" ,"title2") ;
man->CreateNtupleIColumn ("ID") ; :F-ID=2
man->FinishNtuple () ;

i Fill ntuples

= File handling and general clean-up as
shown for histograms

#include "MyAnalysis.hh"
void MyEventAction: :EndOfEventAction (const G4Run* aRun)
{
auto man = G4AnalysisManager: :Instance() ;
man->FillNtupleDColumn (1, 0, fEnergyAbs)
man->FillNtupleDColumn (1, 1, fEnergyGap) ;
man->AddNtupleRow (1) ;

ID=1,
columns 0, 1

man->FillNtupleIColumn (2, 0, fID) D=2
man->AddNtupleRow (2) ; COMH%]O

i G4Accumulable<T>

emplated class to collect simple information
» Thread-safe
= Accumulable during Run
= Value merge at the end (explicit)
» Scalar variables only (otherwise, expert)
= Alternative to ntuples/histograms (/ater)

= Managed by G4AccumulableManager

= See example B1 and B3a
A Geant4 10.2: Previously named G4Parameter!

» G4Accumulable.hh

iG4AccumuIabIe — C++ (1)

1) Declare (instance) variables (of RunAction)

G4Accumulable<G4int> fNElectrons;
G4Accumulable<G4double> fAverageElectronEnergy;

2) Register to accumulable manager (in RunAction constructor)

G4AccumulableManager* accManager = G4AccumulableManager: :Instance() ;
accManager->RegisterAccumulable (fNElectrons) ;
accManager->RegisterAccumulable (fAverageElectronEnergy) ;

3) Reset to zero values (in RunAction: :BeginOfRunAction)

G4AccumulableManager* accManager = G4AccumulableManager: :Instance();
accManager->Reset () ;

4) Update during run (e.g. in Stacking action)

fNElectrons += 1; // Normal arithmetics

iG4AccumuIabIe — C++ (2)

5) Merge after run (in RunAction: :EndOfRunAction)

G4AccumulableManager* accManager = G4AccumulableManager: :Instance();
accManager->Merge () ;

6) Report after run (in RunAction: : EndOfRunAction)

{
{

else

G4cout
G4cout
G4cout
G4cout

G4cout

<<
<<
<<
<<

<<

G4AccumulableManager* accManager = G4AccumulableManager: :Instance()
if (IsMaster())

if (fNElectrons.GetValue())

" * Produced " << fNElectrons.GetValue() ;

" secondary electrons/event. Average energy: ";
fAverageElectronEnergy.GetValue () /keV/fNElectrons.GetValue () ;
" keV" << G4dendl;

" * No secondary electrons produced" << G4endl;

!'_ More slides...

iOutput stream (G4cout)

= G4cout is a iostream object defined by Geant4.
= Used in the same way as standard std: : cout
= Output streams handled by G4UImanager
. I(_i4end1 is the equivalent of std: :endl to end a
ine
= MT-handling: will display also the threadID
WT1> I am here
WT5> I am here

= Output strings may be displayed in another window
(Qt GUI) or redirected to a file

iExampIe: output on screen

void SteppingAction: :UserSteppingAction (const G4Step* aStep)
{
// Collect data
G4Track* theTrack = aStep->GetTrack() ;
G4DynamicParticle* particle = theTrack->GetDynamicParticle() ;
G4ParticleDefinition* parDef = particle->GetDefinition() ;

G4double edep = aStep->GetTotalEnergyDeposit () ;
G4double particleCharge = particle->GetCharge() ;
G4double kineticEnergy = theTrack->GetKineticEnergy () ;

// The output

G4cout
<< "Energy deposited--->" << " " << edep < "
<< "Charge--->" << " " << particleCharge << " "
<< "Kinetic Energy --->" << " " << kineticEnergy << " " <<

G4endl;
}

Begin of Event: ©

Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy

deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->
deposited--->

.36876
.63368
.98509
. 73055
.0225575
.47468
.0218983
.22223
.10685
.62999
.50997
.28403
.77231
WEEE]
.9153
14.3767
14.3352

9
8
8
)
4
(%]
1
(%]
)
7
6
6
6
)
)
3

.85941e-22 Charge--->

Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->
Charge--->

(o)) Wi e) o) W) WNe) W) o) BiNe) N e) Ne) B e) Ne) BN e) I e) e) N e) JNe))

Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic
Kinetic

energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->
energy--->

Output on screen: an example

99.
93.
88.
84.
69.
55.

Example: output to an ASCII

ifile

#include <fstream>

class SteppingAction{
//

std: :ofstream fout;

}s
SteppingAction: : SteppingAction() : fout("outfile.txt") { }

void SteppingAction: :UserSteppingAction (const G4Step* aStep)
{
GATrack* theTrack = aStep->GetTrack() ;
G4double edep = aStep->GetTotalEnergyDeposit() ;
G4double kineticEnergy = theTrack->GetKineticEnergy () ;

// The output
fout
<< "Energy deposited--->" << " " << edep << " "
<< "Kinetic Energy -->" << " " << kineticEnergy << G4endl;

i Hands-on session

= [ask4
= Task4a: User Actions
= Task4b: Command-based scoring

» http://geantd4.lngs.infn.it/belgrade201
9/task4

Two years open post-doc position (junior or
senior) for working on Geant4 for simulation of a
protontherapy beamline and connected issues

In case of interest write to
pablo.cirrone@lIns.infn.it

	Interaction with the Geant4 kernel – part 1
	… User classes (cont'ed)
	Outlook
	Part I: The main ingredients
	Geant4 terminology: an overview
	Run, Event and Tracks
	The Event (G4Event)
	The Run (G4Run)
	The Track (G4Track)
	G4TrackStatus
	The Step (G4Step)
	The Step in Geant4
	The G4Step object
	The geometry boundary
	Step concept and boundaries
	Example: parent track and process
	Example: boundaries
	Example: step "deltas"
	Example: particle info
	Part II: Optional User Action classes
	Optional user classes
	Multi-threaded processing of events
	User actions in MT mode
	G4UserRunAction
	G4UserEventAction
	G4UserStackingAction
	G4UserTrackingAction
	G4UserSteppingAction
	Registration of user actions
	MyActionInitialization
	Multiple user actions
	Part III: Command-based scoring
	Command-based scoring
	Diapositiva numero 35
	G4analysis tools
	Geant4 analysis classes
	g4analysis
	Histograms
	Open file and book histograms
	Fill histograms and write on file
	Ntuples
	Ntuples support
	Book ntuples
	Fill ntuples
	G4Accumulable<T>
	G4Accumulable – C++ (1)
	G4Accumulable – C++ (2)
	More slides…
	Output stream (G4cout)
	Example: output on screen
	Output on screen: an example
	Example: output to an ASCII file
	Hands-on session
	Diapositiva numero 55

