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Interaction with the Geant4

!'_ kernel — part 1



.. User classes (cont'ed)

i A itialization At execution
i G4VUserDetectorConstruction G4VUserPrimaryGeneratorAction

|

|

| o

| G4VUserPhysicslList G4UserRunAction*
|

I G4UserEventAction

G4VUserActionInitialization

G4UserStackingAction

G4UserTrackingAction

G4UserSteppingAction

Local: an instance of each action

class exists for each thread.
(*) Two RunAction's allowed: one for master
and one for threads

Global: only one instance exists in
memory, shared by all threads.



iOutIook

= Run, Event, Track, ...
= a word about multi-threading

= Optional user action classes

= Command-based scoring

= Accumulables

= Analysis tools (detached slides)



!'_ Part I: The main ingredients



Geant4 terminology: an

icverview

= The following keywords are often used in
Geant4

= Run, Event, Track, Step

= Processes: At Rest, Along Step, Post Step
= Cut (or production threshold)

= Worker/master thread (for MT)




iRun, Event and Tracks

Run

Event 1 - - -

Event 2

Event 3 " " ack3 | tracka



The Event (G4Event)

An Event is the basic unit of simulation in Geant4

At the beginning of processing, Erimary tracks are generated
and they are pushed into a stac

A track is popped up from the stack one-by-one and ‘tracked’
= Secondary tracks are also pushed into the stack

= When the stack gets empty, the processing of the event is
completed

G4Event class represents an event. At the end of a successful
event it has:

» List of primary vertices and particles (as input)

= Hits and Trajectory collections (as outputs)
G4EventManager class manages the event
G4UserEventAction is the optional User hook



iThe Run (G4Run)

= As an analogy with a real experiment, a run of Geant4
starts with ‘Beam On’
= Within a run, the User cannot change
= The detector setup
= The physics setting (processes, models)

= A Run is a collection of events with the same detector
and physics conditions

= At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

= The G4 (MT) RunManager class manages the
processing of each Run, represented by:

= G4Run class
= G4UserRunAction for an optional User hook



iThe Track (G4Track)

The Track is a snapshot of a particle and it is represented
by the G4Track class

= It keeps ‘current’ information of the particle (i.e. energy,
momentum, position, polarization, f’

« It is updated after every step
The track object is deleted when
= It goes outside the world volume
= It disappears in an interaction (decay, inelastic scattering)

= It is slowed down to zero kinetic energy and there are no
'AtRest’ processes

« It is manually killed by the user

No track object persists at the end of the event
G4ATrackingManager class manages the tracking
G4UserTrackingAction is the optional User hook



* G4TrackStatus

= After each step the track can change its state

= The status can be (red can only be set by the
User)




iThe Step (G4Step)

= G4Step represents a step in the particle
propagation
= A G4Step object stores transient information of the
step
= In the tracking algorithm, G4Step is updated each
time a process is invoked (e.g. multiple scattering)
= You can extract information from a step after the
step is completed, e.g. in
= ProcessHits () method of your sensitive detector
(see later)

= UserSteppingAction () of your step action class
file (see later)




iThe Step in Geant4

= The G4Step has the information about the two points
(pre-step and post-step) and the ‘delta’ information
of a particle (energy loss on the step, .....)

= Each point knows the volume (and the material)

= In case a step is limited by a volume boundary, the end
Boint physically stands on the boundary and it logically
elongs to the next volume

Post-step point

Pre-step point

s G4UserSteppingAction is the optional User hook



iThe G4Step object

= A G4Step oObject contains

= The two endpoints (pre and post step) so one has
access to the volumes containing these endpoints

=« Changes in particle properties between the points
= Difference of particle energy, momentum, .....
= Energy deposition on step, step length, time-of-flight, ...
= A pointer to the associated G4Track object

= Volume hierarchy information

= G4Step provides many Get... methods to access
information or object istances
» GA4StepPoint* GetPreStepPoint(), .......



iThe geometry boundary

= To check if a step ends on a boundary, one may
compare if the physical volume of pre and post-step
points are equal

= One can also use the step status

= Step Status provides information about the process that
restricted the step length

» It is attached to the step points: the pre has the status
of the previous step, the post of the current step

« If the status of POST is £GeometryBoundary the step
ends on a volume boundary (does not apply to word
volume)

= To check if a step starts on a volume boundary you can
also use the step status of the PRE-step point



iStep concept and boundaries

/Volumc boundary \

step ends on boundary post—step
re—step it
tmint ' step starts on boundary /. P
pre—step point
{ step—status 18

?ggoﬁﬁdw post—step point fGeomBoundary




Example: parent track and
Process

if (track->GetTrackID() != 1)

{

G4cout << "Particle is a secondary" << G4endl;

if (track->GetParentID() == 1)
{

}

// Get process information

G4VProcess* creatorProcess = track->GetCreatorProcess();
G4String processName = creatorProcess->GetProcessName();
G4cout << "Particle was created by " << processName << G4endl;

}

G4cout << "But parent was a primary" << G4endl;




iExampIe: boundaries

G4StepPoint* preStepPoint = step -> GetPreStepPoint();
G4StepPoint* postStepPoint = step -> GetPostStepPoint();

// Use the GetStepStatus() method of G4StepPoint to get the status of the
// current step (contained in post-step point) or the previous step
// (contained in pre-step point):
if(preStepPoint -> GetStepStatus() == fGeomBoundary) {
G4cout << "Step starts on geometry boundary"” << G4endl;
}
if(postStepPoint -> GetStepStatus() == fGeomBoundary) {
G4cout << "Step ends on geometry boundary"” << G4endl;

}

// You can retrieve the material of the next volume through the
// post-step point:
G4Material* nextMaterial = step->GetPostStepPoint()->GetMaterial();




iExampIe: step "deltas"

MySensitiveDetector: :ProcessHits(G4Step* step, G4TouchableHistory*) {
// Total energy deposition on the step (= energy deposited by energy loss
// process and energy of secondaries that were not created since their
// process and energy of secondaries that were not created since their
// energy was < Cut):
G4double energyDeposit = step -> GetTotalEnergyDeposit();

// Difference of energy, position and momentum of particle between pre-
// and post-step point

G4double deltaEnergy = step -> GetDeltaEnergy();

G4ThreeVector deltaPosition = step -> GetDeltaPosition();

G4double deltaMomentum = step -> GetDeltaMomentum();

// Step length
G4double stepLength = step -> GetStepLength();




iExampIe: particle info

// Retrieve from the current step the track (after PostStepDolt of
// step is completed):
G4Track* track = step -> GetTrack();

// From the track you can obtain the pointer to the dynamic particle:
const G4DynamicParticle* dynParticle = track -> GetDynamicParticle();

// From the dynamic particle, retrieve the particle definition:
G4ParticleDefinition* particle = dynParticle -> GetDefinition();

// The dynamic particle class contains e.g. the kinetic energy after the step:
G4double kinEnergy = dynParticle -> GetKineticEnergy();

// From the particle definition class you can retrieve static
// information like the particle name:

G4String particleName = particle -> GetParticleName();

G4cout << particleName << ": kinetic energy of "
<< (kinEnergy / MeV) << " MeV" << G4endl;




Part II: Optional User Action

!'_ classes




iOptionaI user classes

= Five base classes with virtual methods the user may
override to step during the execution of the application
("user hooks")
= G4UserRunAction .
e.g. actions to be done

! G4UserEvent:Action. <@ : thc beginning and
= G4UserTrackingAction end of each event

=« G4UserStackingAction
= G4UserSteppingAction

= Default implementation (not purely virtual): do
nothing

= Therefore, override only the methods you need.



Multi-threaded processing of

i events

Master thread
|

[ G4Run (100 evts) ]

Worker 1

Worker 2

Worker 3

G4Run (33 evts)

e

G4Run (34 evts)

G4Run (33 evts)

Event 0 Event 33 Event 67
Event 32 Event 66 Event 99
v v v
Results Results Results

[ G4Run::Merge() }/

v

[ Results }




‘L User actions in MT mode
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iG4UserRu nAction

void BeginOfRunAction (const G4Runt*)
void EndOfRunAction (const G4Runt*)
G4Run* GenerateRun ()

Uses:

= Book/output histograms and other analysis tools
= Custom G4Run with additional information
= Define parameters

/N



iG4UserEventAction

void BeginOfEventAction (const G4Event¥)
volid EndOfEventAction (const G4Ewvent¥)

Uses:
« Hit collection and event analysis
= Event selection

= Logging (e.g. output event number)



iG4UserStackingAction

G4ClassificationOfNewTrack
ClassifyNewTrack (const G4Track¥*)

void NewStage ()

void PrepareNewEvent ()

Uses:
= Pre-selection of tracks (~manual cuts)
= Optimization of the order of track execution



iG4UserTrackingAction

void PreUserTrackingAction (const
G4Track¥*)

void PostUserTrackingAction (const
G4Track¥*)

Uses:
= [rack pre-selection
sStore trajectories



iG4UserSteppingAction

void UserSteppingAction (const G4Step*)

Uses:
= Get information about particles
= Kill tracks under specific circumstances



iRegistration of user actions

= In multi-threading mode (and sequential),
objects of user action classes must be
registered to the G4 (MT) RunManager Via a
user-defined action initialization class

runManager->SetUserInitialization(
new MyActionInitialization);

= In sequential mode, the actions can a/so be
registered to the run manager directly (not
recommended)



iMyActionInitiaIization

s Register thread-local user actions

void MyActionInitialization::Build() const Also the primary

{ nerator
//Set mandatory classes / generato

SetUserAction(new MyPrimaryGeneratorAction());
/| Set optional user action classes
SetUserAction(new MyEventAction());
SetUserAction(new MyRunAction());




iMuItlpIe user actions

e GAMultiRunAction
* GAMultiEventAction
e GAMultiTrackingAction
e GAMultiSteppingAction
* no G4MultiStackingAction

auto multiAction = new G4MultiEventAction{ new MyEventActionl,
new MyEventAction2 };

//...

multiAction->push back (new MyEventAction3) ;

SetUserAction (multiAction) ;

Containers enabling to have multiple user actions of the
same “kind”, implemented as customized std::vector’s.




Part ITI: Command-based

!'_ scoring




i Command-based scoring

UI commands for scoring
- no C++ required,
apart from instantiating

int main() {

G4ScoringManager: : GetScoringManager () ;

G4ScoringManager in }
main ()

e Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

e Define mesh parameters

/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

* Define primitive scorers
/score/quantity/eDep <scorer_name>

currently 20 scorers are available

/score/mesh/boxsize <dx> <dy> <dz>

/score/quantity/cellFlux <scorer_name>

e Define filters
/score/filter/particle <filter_name>
<particle_list>
/score/filter/kinE <filter_name>
<Emin> <Emax> <unit>
currently 5 filters are available
e Qutput
/score/draw <mesh_name>
<scorer_name>
/score/dump,
/score/list
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!'_ G4analysis tools

(detached session)



iGeant4 analysis classes

= A basic analysis interface is available in Geant4 for
histograms (1D and 2D) and ntuples

= Make life easier because they are thread-safe
« ROOT is not! Manual text output usually not!
= No need to worry about the interference of threads

= Unique interface to support different output formats
= ROOT, AIDA XML, CSV and HBOOK

= Code is the same, just change one line to switch from
one to an other

= Everything done via G4AnalysisManager
= Singleton class - use Instance()
« UI commands available



i g4analysis

= Selection of output format is performed by including
a proper header file

= All the rest of the code unchanged
= Unique interface

#ifndef MyAnalysis h
#define MyAnalysis h 1

#include "g4root.hh"
//#include "g4xml.hh"
//#include "g4d4csv.hh" // can be used only with ntuples

#endif

A Advanced topic: It is possible to use more formats at the same time. See documentation.
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iOpen file and book histograms

#include "MyAnalysis.hh"

void MyRunAction: :BeginOfRunAction (const G4Run* run)

{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager: :Instance() ;
man->SetVerboselevel (1) ;

man->SetFirstHistoId (1) ; Start numbering of

histograms from ID=1

// Creating histograms
man->CreateHl ("h","Title", 100, 0., 800); ID=1
man->CreateHl ("hh","Title",100,0.,10); D=2

// Open an output file
man—>OpenFile("myoutput")i}_ Open output file
}



Fill histograms and write on

ifile

#include "MyAnalysis.hh"
void MyEventAction: :EndOfEventAction (const G4Run* aRun)

{

auto man = G4AnalysisManager: :Instance() ;
man->FillH1 (1, fEnergyAbs/MeV) ; ID=1
man->FillH1 (2, fEnergyGap/MeV) ; D=2

}

void MyRunAction: :EndOfRunAction (const G4Run* aRun)

{
G4AnalysisManager: :Instance () ->Write() ;

}

int main|()

{

G4AnalysisManager: : Instance () ->CloseFile() ;
}



‘L Ntuples

Voo NOOUTE, WDNERERO
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i Ntuples support

= g4tool supports ntuples
= Any number of ntuples
= Any number of columns per ntuple
= Supported types are int/float/double

= For more complex tasks (e.g. full functionality
of ROOT TTrees) have to link ROOT directly

=« And take care of thread-safety




iBook ntuples

#include "MyAnalysis.hh"
void MyRunAction: :BeginOfRunAction (const G4Run* run)
{
// Get analysis manager
auto man = G4AnalysisManager: :Instance() ;
man-> SetFirstNtupleId(1l) Start numbering of
ntuples from ID=1
// Creating ntuple
man->CreateNtuple ("name", "Title"); ID=1
man->CreateNtupleDColumn ("Eabs") ;
man->CreateNtupleDColumn ("Egap") ;
man->FinishNtuple () ;

man->CreateNtuple ("name2" ,"title2") ;
man->CreateNtupleIColumn ("ID") ; :F-ID=2
man->FinishNtuple () ;



i Fill ntuples

= File handling and general clean-up as
shown for histograms

#include "MyAnalysis.hh"
void MyEventAction: :EndOfEventAction (const G4Run* aRun)
{
auto man = G4AnalysisManager: :Instance() ;
man->FillNtupleDColumn (1, 0, fEnergyAbs)
man->FillNtupleDColumn (1, 1, fEnergyGap) ;
man->AddNtupleRow (1) ;

ID=1,
columns 0, 1

man->FillNtupleIColumn (2, 0, fID) D=2
man->AddNtupleRow (2) ; COMH%]O



i G4Accumulable<T>

emplated class to collect simple information
» Thread-safe
= Accumulable during Run
= Value merge at the end (explicit)
» Scalar variables only (otherwise, expert)
= Alternative to ntuples/histograms (/ater)

= Managed by G4AccumulableManager

= See example B1 and B3a
A Geant4 10.2: Previously named G4Parameter!




» G4Accumulable.hh

iG4AccumuIabIe — C++ (1)

1) Declare (instance) variables (of RunAction)

G4Accumulable<G4int> fNElectrons;
G4Accumulable<G4double> fAverageElectronEnergy;

2) Register to accumulable manager (in RunAction constructor)

G4AccumulableManager* accManager = G4AccumulableManager: :Instance() ;
accManager->RegisterAccumulable (fNElectrons) ;
accManager->RegisterAccumulable (fAverageElectronEnergy) ;

3) Reset to zero values (in RunAction: :BeginOfRunAction)

G4AccumulableManager* accManager = G4AccumulableManager: :Instance();
accManager->Reset () ;

4) Update during run (e.g. in Stacking action)

fNElectrons += 1; // Normal arithmetics




iG4AccumuIabIe — C++ (2)

5) Merge after run (in RunAction: :EndOfRunAction)

G4AccumulableManager* accManager = G4AccumulableManager: :Instance();
accManager->Merge () ;

6) Report after run (in RunAction: : EndOfRunAction)

{
{

else

G4cout
G4cout
G4cout
G4cout

G4cout

<<
<<
<<
<<

<<

G4AccumulableManager* accManager = G4AccumulableManager: :Instance()
if (IsMaster())

if (fNElectrons.GetValue())

" * Produced " << fNElectrons.GetValue() ;

" secondary electrons/event. Average energy: ";
fAverageElectronEnergy.GetValue () /keV/fNElectrons.GetValue () ;
" keV" << G4dendl;

" * No secondary electrons produced" << G4endl;




!'_ More slides...



iOutput stream (G4cout)

= G4cout is a iostream object defined by Geant4.
= Used in the same way as standard std: : cout
= Output streams handled by G4UImanager
. I(_i4end1 is the equivalent of std: :endl to end a
ine
= MT-handling: will display also the threadID
WT1> I am here
WT5> I am here

= Output strings may be displayed in another window
(Qt GUI) or redirected to a file



iExampIe: output on screen

void SteppingAction: :UserSteppingAction (const G4Step* aStep)
{
// Collect data
G4Track* theTrack = aStep->GetTrack() ;
G4DynamicParticle* particle = theTrack->GetDynamicParticle() ;
G4ParticleDefinition* parDef = particle->GetDefinition() ;

G4double edep = aStep->GetTotalEnergyDeposit () ;
G4double particleCharge = particle->GetCharge() ;
G4double kineticEnergy = theTrack->GetKineticEnergy () ;

// The output

G4cout
<< "Energy deposited--->" << " " << edep < "
<< "Charge--->" << " " << particleCharge << " "
<< "Kinetic Energy --->" << " " << kineticEnergy << " " <<

G4endl;
}
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Example: output to an ASCII

ifile

#include <fstream>

class SteppingAction{
//

std: :ofstream fout;

}s
SteppingAction: : SteppingAction() : fout("outfile.txt") { }

void SteppingAction: :UserSteppingAction (const G4Step* aStep)
{
GATrack* theTrack = aStep->GetTrack() ;
G4double edep = aStep->GetTotalEnergyDeposit() ;
G4double kineticEnergy = theTrack->GetKineticEnergy () ;

// The output
fout
<< "Energy deposited--->" << " " << edep << " "
<< "Kinetic Energy -->" << " " << kineticEnergy << G4endl;




i Hands-on session

= [ask4
= Task4a: User Actions
= Task4b: Command-based scoring

» http://geantd4.lngs.infn.it/belgrade201
9/task4



Two years open post-doc position (junior or
senior) for working on Geant4 for simulation of a
protontherapy beamline and connected issues

In case of interest write to
pablo.cirrone@lIns.infn.it
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