XIII SuperB General Meeting, Isola d'Elba, 31/05/2010

IFR Optimization

G.Cibinetto, N.Gagliardi, M.Munerato and M.Rotondo

Outline

- IFR configurations results of the last General Meeting;
 - Do we need an extra layer?;
 - Preliminary results of BDT using a configuration with 8 and 9 layers;
 - Preliminary results of BDT adding noise and real detector efficiency;
- K_L first studies;
 - $\sim E_{\text{DEP}}$: K_{L} energy lost in EMC;
 - FirstLayer and LastLayer distributions;
 - ✓ K_L Cluster size (iron cm);
 - A very loose K_L selector to compare configurations with 8 and 9 active layers;
- Summary.

Results of the last Meeting

Do we need another active layer?

efficiency requiring a fixed value of pion mis-ID;

- Simulated 5M of single muons and pions for both the configurations;
- •Momentum range from 0 to 5 GeV/c with flat distribution fired in all the sextants of the barrel;
- •Configurations compared using a BDT as multivariate classification algorithm: same 9 variables used for the previews comparison (C_{13}, C_{14}, C_2') ;
- •BDT analysis performed in 4 momentum bins;
- Check how the result changes adding 1.5% of noise and real detector efficiency (95%)

BDT optimization

BDT optimization performed in 4 momentum bins; No noise simulated.

0.0 < p < 1.5

5

BDT results

 Muon efficinecy extracted for each momentum bin requiring a pion mis-ID of 2%

Noise and real detector efficiency

Add 1.5% of uniform noiseActive Layers efficiencies of 95%

First overview of the K_L interactions

•Simulated 110k of single K_L using C_2 ' configuration and 10k using C_2 ' with 9 active layers;

•Momentum: range from 0.6 MeV to 4.5 GeV/c with flat distribution;

•Fired orthogonally to the top-sextant of the barrel $(\vartheta = \pi/2, \phi = \pi/2)$;

• Distinguish K_L interacting in the EMC from K_L interacting in the IFR volume;

•Use the energy deposited in the EMC to distinguish these K_L categories;

First Layer

FirstLayer

Distribution of the K_Ls first hit layer which leave a signal in the IFR

 In average the number of first hit layer increases if we require weak interactions in the EMC

Last Layer

Distribution of the K_Ls last hit layer which leave a signal in the IFR
In average the number of last hit

In average the number of last hit layer increase if we require weak interactions in the EMC

K_L cluster size

Analyzing the distribution of LastLayer-FitstLayer as function of the momentum is possible to infer the K_L cluster size (iron cm)
 Different K_L cluster size depending by E_{DEP}

C_{8L} vs C_{9L}

Performed a K_L selector in order to compare the configurations with 8 and 9 active layers;
We require K_L with E_{DEP} <0.150 MeV and at least 3 layers hits
Study the K_L selection efficiency as function of the momentum

K_L efficiency vs momentum

Configuration with 9 active layers gives better performance

KL Selection Efficiency vs TrkP

K_L efficiency vs momentum

Requiring at least 4 layers hits (hypothesis of larger background)
Increased the performance difference between the two configurations

Summary

•From the study seems that an extra layer doesn't increase significantly the muon ID and pion rejection (in average about 1% for each momentum bin considered);

- •Started to study K_L ID;
- •We distinguish K_L interacting in the EMC from K_L interacting in the IFR volume
- •Performed a Very Loose K_L selector to compare configuration
- with 8 and 9 active layers;
- •Configuration with 9 layer gives better K_L efficiency;
- •Need to simulate background samples ;
- •Energetic gamma;
- Pions;