SuperB Trigger Introduction & Status

S. Luitz, SuperB General Meeting, Elba, June 2010

- Rate Estimates
- Trigger Architecture
- L1 Trigger
- L3 / HLT Trigger
- Beyond the baseline
- Next Steps / R&D

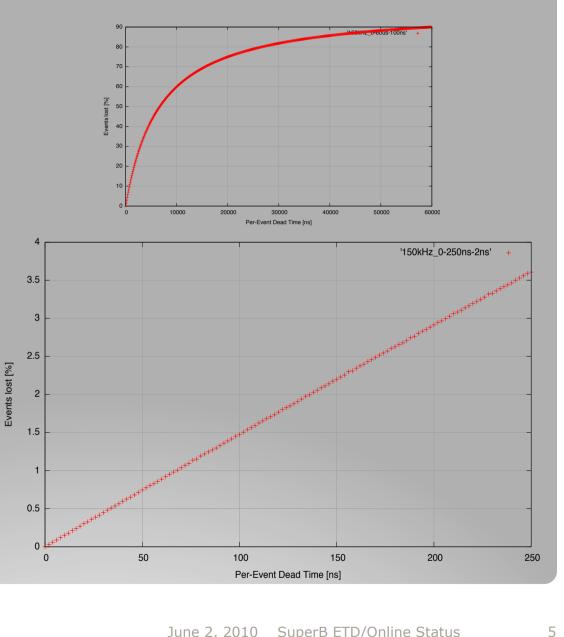
- Baseline: Re-implement BaBar trigger with some improvements
- "Hardware" L1 Trigger
 - Synchronous, fixed latency, fully pipelined
 - DCT, EMT, GLT
 - Optional: Bhabha Veto, SVT trigger
- Software L3/High Level Trigger
 - Runs on Trigger Farm, decision based on fast specialized reconstruction of complete events
 - 10ms / event (?)
- No L2 trigger
 - Placeholder for a filter in the data path that would act on partial event information

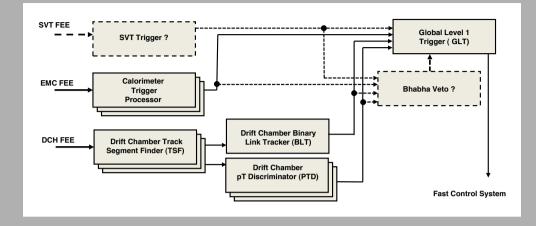
SuperB Trigger Architecture

- Estimates extrapolated from BaBar for a detector with BaBar-like acceptance
- Bunch crossing instantaneous rate: 476MHz
 - At 10³⁶ the average rate about half that (only half the RF buckets are filled)
- Level-1 trigger rates (scaled from BaBar)
 - At 10³⁶: 50kHz Bhabhas, 25kHz beam backgrounds, 25kHz "irreducible" (physics + backgrounds)
 - \rightarrow 75kHz with a Bhabha veto at L1 rejecting 50%
 - \rightarrow 100kHz without Bhabha veto
 - 50% headroom desirable (from BaBar experience)
- \rightarrow baseline: 150kHz rate capability
- HLT output rate
 - Expect do be able to achieve 25nb logging cross section with a safe real-time HLT
 - Could be improved by maybe 5-10nb with a more aggressive filter (storage & processing cost vs. risk)
- \rightarrow Have to log 25kHz of 75kByte events

Trigger Rate Extrapolations

• Target: ~1% event loss • Assume exponential pdf of event interarrival time. Assume continuous beams


(2.1ns between bunch crossings) •No simulation of derandomizer buffers yet


• 1% event loss due to dead corresponds to 1/150kHz -- ca. 70ns maximum per-event dead time.

 Places hard constraints on trigger output and FCTS command length!

Dead Time

NATIONAL ACCELERATOR LABORATOR

- Fully pipelined
- input running at 7MHz
 - continuous reduced-data streams from sub-detectors over fixed-latency links
 - EMC crystal sums (in the FEE)
 - DCH hit patterns (in the FEE)
- output maybe 14 MHz (fine time fit)
- Total latency goal: 4us
 - Includes trigger readout, FCTS, propagation
 - leaves about 1-2 us for the trigger itself

Level-1 Trigger

"BaBar-like L1 Trigger"

- •Calorimeter Trigger
 - cluster counts and energy thresholds
- Drift chamber Trigger
 - Track counts, p_T, zorigin of tracks
- Highly efficient, orthogonal
- To be studied:
- SVT trigger
 - # tracks, # tracks
 - not from IP, # back-
 - to-back tracks in phi
- Bhabha veto
 - $\bullet \rightarrow HLT?$

Drift Chamber Trigger (DCT)

- Track Segment Finder (TSF) performs lookup table driven hit pattern recognition inoverlapping 8-wire supercells
- Binary Link Tracker (BLT) combines track segments in 5 to 10 superlayers to short / long tracks (B and A tracks)
- PT Discriminator (PTD) applies mininum transverse momentum requirement using
- track segments (A'tracks)

Calorimeter Trigger (EMT)

- Combines EMC crystals to towers in 40 phi bins
- Applies three different energy thresholds (M, G, E clusters)

IFR (instrumented flux return) Trigger

Encodes hit topologies of penetrating particles

Global Level 1 Trigger (GLT)

 Combines, matches and counts inputs from the above objects to Level 1 primitives

BaBar Level-1 Trigger Components

(subsequent slides contain info from a talk by R. Bartoldus in 1999) - note tat this is pr-DCZ

- The GLT receives input signals from DCT, EMT and IFT as 9 different trigger objects.
 - DCT objects
 - A track (a long track passing all 10 superlayers)
 - B track (a short track reaching superlayer 5)
 - A'track (an A track satisfying a mininum pt > 800 MeV)

EMT objects (with different energy thresholds)

- M cluster (minimum ionizing cluster > 100 MeV)
- G cluster (intermediate energy cluster > 300 MeV)
- E cluster (high energy electron/gamma > 800 MeV)
- X cluster (MIP in the forward endcap > 100 MeV)
- Y cluster (electron in the backward barrel > 1 GeV)

IFT objects (3-bit pattern)

 U (e.g. U=3 encoding two back-to-back sextants in either the barrel or the endcap)

BaBar GLT Input

- The GLT delays and combines these objects into a total of 17 object counts:
 - Back-to-back objects
 - A*, B* (back-to-back short/long tracks)
 - M*, G* (back-to-back M/G clusters)
 - EM (E vs M clusters back-to-back)

• DCT + EMT match object

- AM (A track and M cluster phi match < 72 deg)
- BM (B track and M cluster phi match < 72 deg)
- A'M(A'trackandMclusterphimatch<36deg)
- BMX (M cluster object vetoed by X without BX phi match)

Outputs

- GLT outputs 24 trigger lines to the Fast Control and Timing system (FCT)
- Each line is specified by one or more cuts in terms of the 17 object counts
- A cut is defined by an operation code (>=, = , <) and a cut value (0-7), e.g., (nB >= 2 and nA >= 1)

BaBar GLT and GLT Output

- Receives events at L1-accept rate from network event builder
- Performs specialized fast DCH & EMC reconstruction using L1 information as seed
 - Track segments
 - EMC clusters
- High efficiency (typ. >99% for physics processes)
- CPU usage ~1ms/event/core on modern CPUs

Uses offline framework

- Construct trigger objects using "tools"
- Apply "filters" based on objects
- Construct "paths" from tools and filters
- Event classification in terms of track and cluster topologies
 - Identification of physics processes for monitoring and performance studies
 - Exception: Bhabha events
 - Lumi measurement
 - Veto: clean Bhabas are downscaled

Tracking

- Combine Track Segment Finder (TSF) segments from the drift chamber trigger (lookup table driven pattern recognition)
- Find event t0 from TSF hits (to better than 10ns)
- Perform fast 3D track finding and fitting using TSF + DCHhits (down to Pt ~ 250 Mev)
- Clustering
 - Perform fast 1D clustering based on EMT phi strips
 - Use EMT clusters as seed to perform fast 2D clustering onEMC crystals (used for Bhabha identification)
- Combined
 - Track cluster matching
 - Track extrapolation to calorimeter intercept

- DCH Filters
 - IP Track Filter (requires tracks close to the interaction point)
 - 1 track with: |d0|<1.0cm, |z0|<10cm, Pt>600MeV
 - Or 2 tracks with: |d0|<1.5cm, |z0|<7cm, Pt>250MeV
- EMC Filters
 - High Energy Filter and High Multiplicity Filter
 - 4 EMT clusters with Etot > 1.5 GeV and within 45 degrees back-to-back
 - 2 EMT clusters with Etot > 2.0 GeV and within 45 degrees back-to-back
- Combined Filters
 - Bhabha Veto (very high purity, 1-prong and 2-prong)
 - Online Luminosity (Bhabhas, well known efficiency)
 - Bhabha Accept (high efficiency, for offline luminosity)
 - Radiative Bhabha (for calibration)
 - Prescaled (unbiased) L1Accept
- Logic can be applied to the filters
 - OR, VETO
 - Prescale
- Histograms are filled with L3 quantities for monitoring

Overall

- Reduce latency (faster FPGAs, more parallelism)
- Goal: 4us total latency (to be validated)
- DCH Trigger
 - Double sampling frequency
 - Integrate Z-Trigger (from BaBar upgrade)
 - Requires stereo layers
- EMC Trigger
 - Projective (1d) trigger view -> 2d map (overlapping postage stamps)
 - Cluster finding in 2d map
- GLT
 - Process 2d EMC map info
 - For back-to-back info
 - for track cluster matching
- GLT to be read out as a subdetector (as in BaBar)
 - Track and cluster seeds (per-event)
 - Monitoring and debug information (per-event)

Baseline SuperB Level-1 Trigger

Cell Sums in FEE

- 3x4 in Barrel (12+4 bit full resolution of sum)
- 5x5 in Endcap (12+5 bit full resolution of sum)
 - Chop off LSB and transmit 16bits?
- 2d map in trigger processor
 - Overlapping postage stamps from cell sums
 - 6x8 for barrel
 - 10x10 for endcap

Bhabha Veto at L1

- Can be done (was in principle possible with BaBar)
- Is it safe for physics to be studied
- SVT Trigger
 - # of tracks
 - # of back-to-back tracks
 - To be studied

- Assume 10ms / event / core
- 1500 cores for 150kHz
- 10x the time used by BaBar L3
- Improvements
 - Better tracking
- Should there be a "L4" trigger?
 - BaBar used a filter stage at the input of Reco
 - Should this be moved to the HLT to reduce the amount of permanently recorded data?
 - Safe for physics?
 - Filter was changed a few times through the lifetime of BaBar
 - Risk vs. benefits

- Validate the L1 baseline for SuperB
 - Are efficiencies acceptable for SuperB physics
 - Are our rate estimates correct
 - Needs background studies
 - What of the BaBar L1 implementation (VHDL) can be reused / adapted – how?
- Study the beyond-the-baseline options
- Work with DCH and EMC on details of trigger primitives
- Organize trigger workshop (later this year?)
 Invite BaBar expert(s) for brain-dump ©

