SVT-Pixel layer 0 Readout Architectures

Filippo Maria Giorgi - INFN and University of Bologna

XIII SuperB General Meeting Isola d'Elba, May 30th - June 5th 2010

- Boundary target conditions
- Matrix architecture comparisons
- Matrix scan logic
- Sparsification and readout scheme
- Triggered Architecture
- Integration achievements
- Simulations results
- Improvements
- Conclusions

Summary

- Rate on Area: 100 MHz/cm².
- Matrix area ~ 1.2-1.3 cm².
- Pixel pitch ~ 50 μm
- Matrix dimension 256x192 pixels
- Architecture tailored for hybrid /3DMAPS sensor
- Output bus bandwidth ~ 20bit@200MHz (4Gbps)

Target Conditions

Previous matrix architectures (2D MAPS):

- Simple in pixel digital logic (competitive N-Well)
- Time labeling of hits relayed to external logic
- No hit information from every single pixel (scalability limits)
- → group of 16 pixels: Macro Pixel (MP) with 1 single Fast-OR

→ freezing logic (avoid hits belonging to different Time Windows (BC clock) to populate the same MP)

→ increase of dead area proportional to MP area

→ trade off scalability vs efficiency

- **Moreover**: time ordered hit extraction from the matrix requires **great** amounts of **memory** to store maps of MPs to be scanned for a determined TS (*Scan Buffer*).

New matrix architecture (Hybrid or 3D MAPS):

- **Dense in pixel digital logic** (Time labeling, arbitrary TS comparator for time ordered readout, auto pixel latch reset...)

- Still no hit information from every single pixel (*same 2D scalability limits*)

→ Column fast-OR **BUT...** NOW the TS is at pixel level

\rightarrow NO FREEZING required \rightarrow much less dead area

→NO memory required (Scan Buffer) to perform time ordered matrix scans
→Smaller BC periods allowed (no scan buffer overflows, single col. Sweep..)
→Polyvalent Triggered & Data-push arch. using MATRIX as buffer element.

Matrix architectures comparison

EXAMPLE

During Time Window 2 :

- Some pixels getting fired and labeled with Time Stamp (TS) = 2
- The readout queries the columns containing hits labeled with TS=1 (**Reading Time Window** \rightarrow FastOr activation)
- The readout moves the Active Column over the columns with an active FastOr.

Matrix scan Logic

A pixel data push architecture for Layer0 requires a lot of available bandwidth. (all data must be sent)

Some modifications, involving the sweeper architecture only, make possible to exploit the matrix itself as a hit buffer for a triggered architecture.

This is made possible by the low trigger latency (few us). Efficiency should not drop drastically.

Triggered Architecture

- All the readout architecture coded in **synthsizable VHDL**.
- Sweeper for new matrix architecture rewritten from scratch.
 - Work in progress for the modifications that allow a triggerable architecture.
- Full architecture entirely integrated reusing the same readout components from *SuperPXO* alias *FE4D32x128*.
- We want to recycle as much as possible of them:
 - Sparsification algorithms (zone sparsification)
 - Barrel architecture (dynamic asymmetric FIFOs: variable input width)
 - Concentrators with time sorting preserving algorithms.

Integration achievements

1. High statistic simulations with **Matrix** and **Sweeper** ONLY (DATA-PUSH):

- The evaluated inefficiency depends only on how long it takes to extract a hit from the matrix.
- No readout → no readout bottlenecks taken into account.
- 2. High statistic simulations of the whole architecture (DATA-PUSH):
 - New matrix
 - New sweeper
 - "OLD" SuperPX0 readout AS IS (sparsification and dequeuing logic).

Simulations overview

1. High statistic simulations with **Matrix** and **Sweeper** ONLY (DATA-PUSH):

- The evaluated inefficiency depends only on how long it takes to extract a hit from the matrix.
- No readout → no readout bottlenecks taken into account.

Simulations overview

Linear BC span

	100	150	200	250	300	350	400	450	500	1000	1500	2000	BC (ns)
10	99,97	99,95	99,95	99,93	99,91	99,90	99,88	99,87	99,87	99,78	99,70	99,64	
12	99,96	99,95	99,95	99,92	99,91	99,89	99,88	99,86	99,86	99,77	99,70	99,63	
15	99,95	99,95	99,94	99,91	99,91	99,89	99,87	99,86	99,85	99,76	99,68	99,61	
18	99,93	99,93	99,92	99,91	99,89	99,88	99,86	99,86	99,85	99,74	99,67	99,59	
20	95,40	99,91	99,91	99,90	99,89	99,87	99,86	99,85	99,84	99,73	99,66	99,58	
22	94,33	99,07	99,89	99,89	99,88	99,87	99,85	99,84	99,84	99,73	99,65	99,57	
25	93,95	92,73	95,86	99,72	99,85	99,85	99,84	99,83	99,83	99,72	99,63	99,55	
30	89,31	89,20	88,78	87,92	88,07	91,18	93,89	96,34	98,70	99,69	99,61	99,51	
RDclk(ns)													

Mean Sweeping Time (MST) > BC

Respect to previous matrix architectures :

- Wider margin on MST>BC condition (no scan buffer)
- Higher efficiencies (no freezing)

Since we perform an independent sweep for each BC period, this is an UNAFFORDABLE WORKING CONDITION

> NO sensor efficiency NO pixel reset dead time ONLY SWEEPING DEAD TIME

Linear BC span

	100	150	200	250	300	350	400	450	500	1000	1500	2000	BC (ns)
10	99,97	99,95	99,95	99,93	99,91	99,90	99,88	99,87	99,87	99,78	99,70	99,64	
12	99,96	99,95	99,95	99,92	99,91	99,89	99,88	99,86	99,86	99,77	99,70	99 <i>,</i> 63	
15	99,95	99,95	99,94	99,91	99,91	99,89	99,87	99,86	99,85	99,76	99,68	99,61	
18	99,93	99,93	99,92	99,91	99,89	99,88	99,86	99,86	99 <i>,</i> 85	99,74	99,67	99,59	
20	95,40	99,91	99,91	99,90	99,89	99,87	99,86	99,85	99,84	99,73	99,66	99 <i>,</i> 58	
22	94,33	99,07	99,89	99,89	99,88	99,87	99,85	99,84	99,84	99,73	99,65	99,57	
25	93,95	92,73	95,86	99,72	99,85	99,85	99,84	99,83	99,83	99,72	99,63	99,55	
30	89,31	89,20	88,78	87,92	88,07	91,18	93,89	96,34	98,70	99,69	99,61	99,51	
RDclk(ns)													

Mean Sweeping Time (MST) > BC

Respect to previous matrix architectures :

- Wider margin on MST>BC condition (no scan buffer)
- Higher efficiencies (no freezing)

Since we perform an independent sweep for each BC period, this is an **UNAFFORDABLE WORKING CONDITION**

> NO sensor efficiency NO pixel reset dead time ONLY SWEEPING DEAD TIME

Linear BC span

	100	150	200	250	300	350	400	450	500	1000	1500	2000	BC (ns)
10	99,97	99,95	99,95	99,93	99,91	99,90	99,88	99,87	99,87	99,78	99,70	99,64	
12	99,96	99,95	99,95	99,92	99,91	99,89	99,88	99,86	99,86	99,77	99,70	99,63	
15	99,95	99,95	99,94	99,91	99,91	99,89	99,87	99,86	99,85	99,76	99,68	99,61	
18	99,93	99,93	99,92	99,91	99,89	99,88	99,86	99,86	99,85	99,74	99,67	99,59	
20	95,40	99,91	99,91	99,90	99,89	99,87	99,86	99,85	99,84	99,73	99,66	99,58	
22	94,33	99,07	99,89	99,89	99,88	99,87	99,85	99,84	99,84	99,73	99,65	99,57	
25	93,95	92,73	95,86	99,72	99,85	99,85	99,84	99,83	99,83	99,72	99,63	99,55	
30	89,31	89,20	88,78	87,92	88,07	91,18	93,89	96,34	98,70	99,69	99,61	99,51	
RDclk(ns)													

Mean Sweeping Time (MST) > BC

Respect to previous matrix architectures :

- Wider margin on MST>BC condition (no scan buffer)
- Higher efficiencies (no freezing)

Since we perform an independent sweep for each BC period, this is an UNAFFORDABLE WORKING CONDITION

> NO sensor efficiency NO pixel reset dead time ONLY SWEEPING DEAD TIME

NO MST>BC points plotted

- 2. High statistic simulations of the whole architecture (DATA-PUSH):
 - New matrix
 - New sweeper
 - "OLD" SuperPX0 readout AS IS (sparsification and dequeuing logic).

Simulation overview

Efficiency results:

Compare with SuperPX0 data push arch.

Improvements mainly due to:

- Reduced pixel dead time (no x16 factor due to MP freezed area)

- No more Scan Buffer overflows

Effi.(%) BC (ns)								
		200	250	300				
	66.7	99.93	99.92	99.92				
RD	55.6	99.93	99.92	99.91				
(MHz)	50 (99.92	99.92	99.90				

Again **NOT** taken into account:

- sensor efficiency (assumed 100%)

- pixel reset dead time (assumed few ns)

- **Consistent** with sweeper+matrix only simulations

 - Readout de-queuing efficiency 100% (no barrel overflows)

- Hit check results: 100 % match.

Fast_clock 4 x RDclk (output bus frequency)

SUPERPX0 - RDclk 66.67 MHz - Fast_clk 200 MHz (3x)

efficiency results from similar simulations of *SuperPX0* readout

2. Full architecture simulations

Simulations shows that

for even smaller BC period (150 →100 ns):

- → Time sorting de-queuing algorithm suddenly slows down. (more time windows to manage → more complexity)
- \rightarrow *Barrel* overflow more frequent.

Steps already taken to reach the BC=100 ns working point: REINFORCEMENT for critical components (barrels, concentrators...) IMPROVEMENTS and OPTIMIZATION in other areas

Good chances to reach 100 ns BC with few modifications.

Anyway consider that:

- The Rate 100Mhz/cm² we are trying to sustain should include a x4 cluster factor.
- The architecture is strongly optimized for clustered events
- In the simulations shown hit dispersion is UNIFORM → NO clusters (rate increased x4 "for free" with no cluster benefits)

AND Remember that with **triggered architecture** reaching 100ns of time resolution is no longer an issue.

Improvements....

- New sweeper logic implemented for DATA-PUSH.
 - Under development the triggered sweeper.
- Sweeper connected to an improved SuperPX0 readout.
 - Simulations showed excellent results down to 200 ns of BC even recycling SuperPX0 de-queuing system AS IS (it was designed for BC down to 1 us).
- Further improvements under investigation in order to reach even smaller time windows and wider margins on *Barrel* overflows.
- New functional simulations in sight for the triggered operating mode of the sweeper. (followed by efficiency estimations)

Conclusions