

$DA\Phi NE$ Operations Update

Catia Milardi on behalf of the DA Φ NE Team

59th Scientific Committee Meeting Mar 7, 2020

Outline

 $DA \Phi NE$ since the last SciCom

- Collider Uptime
- Crab-Waist Optics
- Luminosity Diagnostics
- Plans

DA\PhiNE Uptime since last SciCom

LINAC Faults (RF Plant C)

Jan 29th – Feb 7th

Replacement:

Klystron filament PS

Several hardware components

Klystron replaced after working ~ 67000 hours

New klystron conditioning took four days only

LINAC operation at 25 Hz interleaved with klystron conditioning

Feb 24th

Klystron conditioning interleaved with e⁻ beam production On **Mar 6th** the new klystron had to be replaced conditioning has been much more demanding, it was still in a early stage by March 12th

Mod C full operation is mandatory for the BTF-PADME activities too

Water Leakage from WIGGLER hoses in MRp

(Spt 6th 2019 – Mar 12th 2020)

Water Leakage from WIGGLER hoses in MRe

(Spt 6th 2019 – Mar 12th 2020)

Recently some hoses of different kinds have been installed adopting alternative assembly approach for testing.

Vacuum Vent in MRe (Feb 27th 2020)

Vacuum vent from a flange in the ES2 section has been temporary sealed

Harmful pressure rise and beam blowup have been observed during high current operations

Other Faults

Magnet Power Supplies

Hardware components of the MRs closed orbit acquisition system

Power Amplifier of the vertical FBK in MRp (2 FAULTS) 500 W Power Amplifier for a possible second horizontal FBK in MRp is still under repair Following I'll briefly review the results presented during the mid-term SciCom held on Feb 6th according reviewers recommendation

It is proposed to organize an extraordinary mid-term meeting (possibly by video-conf) of the Scientific Committee with all stake holders in early 2020 (end of January, beginning of February), in order to take account of progress made and to discuss, accordingly, the implementation of the remaining run plan for the first half of 2020

Betatron Coupling Correction

11-20 Nov 2019 Safety System Checks, maintenance, BTF cleaning

IR quadrupole alignment has been revised relying on harmonic analysis of the coupling components in the steering magnets Response Matrix as well.

Measurements confirmed a systematic error, of the order of 0.9 degrees, in the rotation of two quadrupoles in each one of the four IR branches.

This downside had no relevant impact on DA Φ NE operations because, regardless the large coupling, both beams have been stored in order to recover optimal dynamic vacuum conditions.

Betatron Coupling Correction

Detuned Optics Linear lattice

Betatron Coupling as measured at the SLM was dramatically reduced Coupling components in the steering magnets Response Matrix became negligible

MRs Optics Development

Coupling correction allowed to do reliable beta function measurements in order to optimize the model and move to the **low-\beta collision optics**

Dec 16th low- β optics applied

Dec 18th ÷ 20th optics optimization and measurements:

- Orbit steering and steering magnets minimization after including some new measured BPM offsets
- Twiss function measurements on linear optics
- Chromaticity correction

MRe Twiss Functions

Low- β Optics Linear lattice

Saturated and/or disconnected BPMs

$\eta_x \,$ and $\eta_x \ddot{}$ in MRe

MRe Chromaticity

Natural ξ

Corrected ξ

- ξ" negligible
- Wide Energy Aperture

-0.7% DE/E $\leq A_{E} \leq 1.1\%$ DE/E

- A_{E} is a factor 2 higher than the best achieved with the detuned optics
- SXTs setup:

has negligible impact on beam orbit does not affect $\sigma_{\rm v}$

• good lifetime

MRp Twiss Functions

Low- β Optics Linear lattice

Saturated and/or disconnected BPMs

η_x and η_x in MRp

MRp Chromaticity

Natural ξ

Corrected ξ

- ξ" negligible
- Wide Energy Aperture

-0.9% DE/E $\leq A_{E} \leq 1.3\%$ DE/E

- A_{E} is a factor 2 higher than the best achieved with the detuned optics
- SXTs setup

has negligible impact on beam orbit does not affect $\sigma_{\rm v}$

• good lifetime

Current trends with low- β Optics

Collisions Studies

January 14th: first collision tests Tests on the CCAL-T luminosity monitor Collimator optimization Vertical beam-beam scan

γ-monitor counting rate

After inserting Collimators

Before inserting Collimators

Separating beams longitudinally counting rate decreases by ~ a factor 10 Separating beams vertically counting rate decreases by less than a factor 2

Present collimator setup has allowed to gain a factor of 5 in terms of signal to background ratio

Low Current Vertical Beam-Beam Scan

 $I^{+} = 128 mA$ $I^{+} = 105 mA$ $n_{b} = 100$

- Scan provides a clear evidence of an optimal beam-beam interaction
- No meaningful difference doubling beam charge in collision
- Measurements are reproducible
- Low- β optics is reliable

$$\begin{split} \Sigma \text{ expected relying on nominal parameters} \\ \epsilon &= 0.28 \ 10^{-6} \text{ [m rad]} \\ \beta_y &= 0.009 \text{ [m]} \\ \kappa &\sim 1\% \text{ (conservative assumption)} \\ \Sigma &= 7.1 \ 10^{-6} \text{ [m]} \end{split}$$

 $\begin{array}{l} Measurements \\ \Sigma \ \sim 7.6 \ \mu\text{m} \\ \sigma_{y} \sim 5.37 \ \mu\text{m} \end{array}$

$DA\Phi NE$ activity program according reviewers recommendation

•Although future planning is contingent on progress over the coming months, **draft planning for 2020 should be produced**. Planning can be versioned. (For example, see LHC schedule)

$DA\Phi NE$ Plan

6 – 22 Feb

MRs working point optimization (it can have a huge impact on background) Collimator tuning for background suppression

Collision optimization

Luminosity studies

Long, stable, and reproducible collision runs in and out of collision and at different beam currents, in order to:

cross-check luminosity measured by the CCAL-T monitor and the SIDDHARTA-2 kaon monitor

optimize the background rejection in the CCAL-T measurement

24 – 25 Feb

 Φ resonance energy scan

26 – 28 Feb

New collision optics with improved phase advances between *Crab-Waist* Sextupoles and IP

2 – 6 Mar

Crab-Waist Sextupoles beam alignment

Since March the 6th we might be able to start the SIDDHARTINO run which, including contingency, should last for about 20 days.

These activities will be carried out in parallel in order to exploit day and night shifts as much as possible

$DA\Phi NE$ Plan

The general activity program has been extensively detailed on daily basis

Date	Scheduled Activities
27/02/20 morning	Reference Orbits optimization, chromaticity measurements in MRp and MRe, tests with e+ beam about polarities of solenoids.
27/02/20 afternoons	CW SXTs alignment measurements in MRp, CW Sextupoles mechanical alignment
28/02/20 morning	TLs optimization, High currents tests and FBKs optimization
28/02/20 afternoons	TLs optimization, High currents tests and FBKs optimization
29/02/20	TLs optimization, Conditioning and/or Collisions tests with CW <u>sextupoles</u> OFF
1/03/20	TLs optimization, Conditioning and/or Collisions tests with CW <u>sextupoles</u> OFF
2/03/20 morning	CW Sextupoles mechanical alignment (if not previously done) and tests.
2/03/20 afternoons	Collisions optimization with CW Sextupoles OFF, test run with 1 bunch for CCALT, SIDDHARTINO acquisition tests
3/03/20 morning	CW sextupoles ON, chromaticity measurements on both rings
3/03/20 afternoon	Collisions optimization with CW <u>sextupoles</u> ON, SIDDHARTINO acquisition tests
4/03/20 morning	Collisions optimization with CW Sextupoles ON
4/03/20 afternoon	SIDDHARTINO acquisition tests

an example ...

CCAL-T Luminometer

The first luminosity measurements were still affected by a relevant uncertainty. Several attempts have been made in order to have a more reliable and general evaluation of the background.

A relevant step ahead has been done by studying in detail the synchronization of the different detector sectors and the detector occupancy, mainly concerning background spatial distribution.

Time synchronization and resolution

After correcting for **TRG time jitter** TRG Gate is acquired to allow for offline correction.

All corrections are performed offline. In case of large time misalignment hardware correction is needed to avoid losses in trigger efficiency.

Single HIT time resolution

Detector Occupancy

40

20

0 _____20

-15

-10

-5

0

10

HIT time difference [ns]

5

15

20

upper e

lower e+

sector pairs exhibits a very different distribution.

A broadened distribution is observed for accidental coincidences, while a sharp peak characterises signal enriched samples

Luminosity measurements

Only one signal enriched sector pair has been used. The expected cross section (MC) is 102 nb

Crab-Waist Optics & IR layout

	PMQD	PMQF
Beam Pipe Aperture H-V (mm) at IP (I row) and at Y (II row) side	57 69 - 55	54
Inner Apert. With Case H-V (mm)	72 - 62	58
Outer Diameter H-V (mm)	238 - 220	95.6
Mech. Length Inner-Outer (mm)	220	168 - 240
Nominal Gradient (T/m)	29.2	12.6
Integrated Gradient (T)	6.7	3.0
Good Field Region (mm)	±20	±20
Integrated Field Quality dB/B	5.00E-4	5.00E-4
Magnet Assembly	2 halves	2 halves

The 4 PMQF quads had to be moved outward with respect to the IP by ~ 0.02 m.

Crab-Waist Optics Features

 $\beta_{x}^{*} = 0.008 \text{ m}$ $\beta_{x}^{*} = 0.26 \text{ m}$ $\alpha_{y}^{*} = -2.08 \text{ E-07}$ $\alpha_{x}^{*} = 5.6 \text{ E-05}$ $\eta_{x}^{*} = \eta_{x}^{*} = 0.0$

$$\begin{split} \beta^{\text{septum}}_{\text{X}} &= 11.52 \text{ m} \\ \Delta \nu_{\text{X}} &= \pi \quad \text{(between Injection KCKs)} \\ \eta_{\text{X}} \text{ negligible at: RF and RCR} \end{split}$$

 $v_x = 5.105$ $v_y = 5.16$

 $\Delta\nu_{\text{y}}$ IP1- CW SXTs verified by closed orbit bump

CW SXTs strength increased by ~ 7% wrt. the SIDDHARTA run

$$k_{s} = \frac{\chi}{2\theta} \frac{1}{\beta_{y}^{*} \beta_{y}^{sext}} \sqrt{\frac{\beta_{x}^{*}}{\beta_{x}^{sext}}}$$

Betatron Coupling in MRs

κ ~ 0.25 % at SLM SXTs ON CW SXTs ON Few QSK ON κ ~ 0.7 % at SLM SXT ON (induce small beam tilt) solenoids ON QSK OFF

Measured Response Matrices of steering magnets do not show any evidence of coupling for either ring

η_{x} in MRs

Comparison between measurements (dots) and model (line)

Saturated and/or disconnected BPMs

MRs Chromaticity

MRe CW SXTs at 200 A

- ξ" negligible
- Wide Energy Aperture
 - -0.7% DE/E $\leq A_{E} \leq 1.1\%$ DE/E
- SXTs setup:
 - has negligible impact on beam orbit does not affect $\sigma_{\rm v}$
- good lifetime

much less time for optimization

Summary of CW Optics Activities

Feb 20th

PMQF moved longitudinally

New CW Optics applied

Feb 21st – Mar 2nd

Betatron Coupling optimized by rotating the PMQFs Closed Orbit optimization

FBKs tuning

Localized Orbit bumps at CW SXTs closed and calibrated Localized Orbit bumps at IP1 closed and calibrated, MRe only Chromaticity measurements and chromatic SXTs optimized

2 – 6 Mar

Crab-Waist SXT beam based alignment, Mre only Crab-Waist SXTs ON, Mre only

Optics tur	ned despite a quite high fault rate:
Feb 24 th	
	Problems with LINAC, positron beam almost no longer available
Feb 27 th	
	Vacuum vent in MRe
Mar 5 ^m	Klustron of the Medulator C has been replaced again
Mar 12th	Rijstron of the Modulator C has been replaced again
	Machine shutdown

$DA\Phi NE$ Plan

 $\mathsf{DA}\Phi\mathsf{NE}$ operations should, presumably, resume by the second half of October

In the meantime several activities have been planned starting after the required PADME installations.

Water leakage from Wiggler cooling system Testing different kind of hoses and hose installation methods with the magnet on

Vacuum:

Replacement of the damaged flange in MRe, to be completed, at the latest, by the end of June.

Power Supplies:

- Repair several faulty components
- Preparatory work to install the new UFS PS in the LINAC

Mechanical & alignment

- Finalization of the PMQFs, magnetic characterization and tuning
- BPMs offsets measurement.

Control System:

- Replacement of obsolete hardware in the DA Φ NE server
- Development of new, more efficient, tools for DA Φ NE data logging
- Porting CS user applications to the new Linux consoles

Control System & Diagnostics

- Definition and acquisition of new hardware in order to start laboratory tests aimed at developing a new acquisition system for the MRs closed orbit measurement
- Fix hardware faults affecting a low pass VME board which is part of the MRs BPMs acquisition system

Luminosity Monitor improvements:

- Background evaluation (S)
- Cosmic Rays simulation and geometry description (S)
- Time synchronization/energy calibration (H/S)
- Energy response equalization (S/H)
- Full efficiency evaluation (H/S)
- MC validation (S)
- On-line luminosity deployment (S)

Main Rings Optics:

- Optimization of the RCR lattice
- Comprehensive non-linear optics studies
- Development of a lattice model for the new **PMQF**s, when magnetic measurements will be available
- Background simulations (following the Reviewers recommendation: *SIDDHART(A/INO)* background conditions and their optimization should be anticipated)

This program has to deal with the well known lack of dedicated manpower and it's not sure that all the items will be finalised.

Manpower

Concerning manpower: by the end of this month the person in charge of the DAFNE Feedback systems will retire.

The $DA \Phi NE$ Commissioning Team will lose a person who has been following machine commissioning on daily bases, has been giving support in terms of operations and beam measurements, and a Run Coordinator.

Another researcher has been appointed to work on Feedback systems

Conclusions

Sources of betatron coupling in the MRs have been identified and fixed, while storing beams for vacuum conditioning.

Low- β optics has been completely characterized and the new model parameters have been used to compute the CW Optics.

First beam-beam vertical scan has produced results coherent with the nominal collision parameters.

CCAL-T luminosity monitor has been extensively characterized during dedicated operations, achieving a luminosity measurements in reasonable agreement with the theoretical predictions and with the SIDDHARTA-2 data.

CW Optics has been applied and optimized in terms of: coupling, orbit, chromaticity, and CW SXTs alignment, mainly for the e⁻ beam.

A minimal plan has been defined to efficiently resume DA Φ NE operations according to the new LNF schedule imposed by the pandemic.

Thank you for your attention

Spare Slides

Luminosity measurements

Only one signal enriched sector has been used. The expected cross section (MC) is 102 nb

Electron

17h40

17h40

17h50

18h00

17h50

18h00

Positron

18h10

CCALT

18h10

18h20

Time

🗝 Geo

18h20

Time

First SIDDHARTA-2 Luminosity Measurement

Geometrical luminosity

