Update on Geant4 muon generator

Lorenzo Viliani (INFN Firenze)

Repository for MITO software

• Gitlab MITO group

- <u>https://baltig.infn.it/mito</u>
- If you want to contribute, sign in to baltig.infn.it and I will add you to the group
- Gitlab repository for Geant4 based MC simulations:
 - <u>https://baltig.infn.it/mito/muraysimulation</u>
 - Contains software for muon generators, detector simulation, predefined Geant4 useractions, etc. mainly developed by Nicola
- Gitlab repository for the simulation software developed by Massimo and Sandro:
 - <u>https://baltig.infn.it/mito/mimasw</u>

Geant4 muon generator - workflow

- Adamo flux (<u>code</u>):
 - Start from Adamo data and build analytic functions representing the differential flux vs p and θ .
 - Data are represented by 8 analytic functions of diff. flux vs p, one for each θ bin of 10° width (from 0° to 80°).
- Produce text tables (<u>code</u>):
 - Sampling the above functions we build text tables containing the differential flux at fixed p and θ values (more details in the next slides).
- MC generation (<u>code</u>):
 - Tables are converted to 2D histograms (x=p, y= θ , bin content=differential flux).
 - Histograms are sampled using standard ROOT methods.
- Interface to Geant4 (code)

Details on the first steps

- We start from 8 analytic functions of diff. flux vs p:
 - $\mathsf{Flux}_{\theta}(p) = \mathsf{A}_0 [p + \mathsf{A}_1 e^{-\mathsf{A}_2 p}]^{-(\mathsf{A}_3 + \mathsf{A}_4)*} p^{\mathsf{A}_4}$ for $\theta \in [\theta_i, \theta_i]$
 - NB: different function used by Sandro and Massimo
 - For each θ bin, a different set of parameters A_i (i=0,1,2,3,4) is defined (fixed and hardcoded!).
 - o Momentum range: 0.1 130 GeV
- In order to get the flux at fixed p and θ :
 - For a given p, extract $Flux_{\theta}$ from the 8 functions above -> 8 fluxes at fixed p and different θ ,
 - $\operatorname{Flux}_{\rho}(\theta) = (\operatorname{Flux}_{\theta 0}, \operatorname{Flux}_{\theta 1}, ..., \operatorname{Flux}_{\theta 7})$
 - Fit with $B_0 (\cos(\theta))^{B_1}$ and get the B_0 and B_1 parameters
 - Extract the flux at the desired θ value.

Flux vs p functions

$[0]^*pow((x+[1]^*pow(TMath::E(),(-[2]^*x))),-([3]+[4]))^*pow(x,[4])$

Flux vs θ fits

Fits are not very accurate, especially at high momentum.

PROBLEM:

- No uncertainties are considered in these points(!!!).
- We should at least propagate the uncertainty from Adamo measurements in order to have a meaningful fit.

2D distributions

• 2D distribution does not show any discontinuity at high p and low θ

Cross check of the MC simulation

8

- Compare MC simulation with analytic functions:
 - 10M events simulation with Geant4 \bigcirc
 - No detector, no material, point-like generation surface Ο
 - Very good agreement with analytic functions (look at Mean and Std Dev!) Ο

Simulated events vs p and θ