Crab Pulsar studies with non-sumtrigger data

Gianluca Giavitto Stefan Klepser (IFAE)

MAGIC Pulsar WG Meeting – Padova 17-19 Feb. 2010

Outline

Regular (L1) observations of the Crab Nebula might display a detectable pulsed emission.

A search in the 2007 - 2009 data has been performed and Taka's proposed emission model is tested.

- Preliminary Data Selection & Checks
- Trial Cuts on Data
- Effective Area and Flux calculations
- Phasograms and Results
- Spectrum / UL
- Conclusion

Data Selection

- Data Timespan: Feb. 2007 Mar 2009
- Preselection (Observation parameter cuts):
 - Zenith<35 deg
 - SrcPosCam-Dev<0.04

The idea then is to select single runs based on their image distribution parameters, which are found to be correlated to the detector performance:

Detector performance

- Cloudiness
- Rate

Image distribution

- RMS (Width)
- RMS (Length)
 - Peak (Size)

Rate, RMS (Width), RMS (Length), Peak (Size) are scaled to $\cos(Z.A.)^{-\alpha}$, α in [0 - 0.5]

Data Selection

Rate, Cloudiness **vs** RMS (Width), RMS (Length), Peak (Size) Blue boxes are selections.

See wiki: Crab_Pulsar_Above_60_GeV

Data Selection

Rate, Peak(Size) are by far the most stringent cuts found.

At the end selected events:

Days: 187 (84)

Files: 27147 (**7580**)

Hours: 293 / (91)

Ev: 178213744

(65810266)

Additional Checks

Rubidium Clock – GPS synchronization:
 checked with 1st timestamp DAQ-NTP differ.

Additional Checks

Rubidium Clock – GPS synchronization:
 checked with 1st timestamp DAQ-NTP differ.

Trial Cut Sets

To have the most possible number of gammas, cuts were performed in:

- Size
- Alpha
 - Dist
- Zenith

4 "HE" data cuts

- -80 < SIZE < 300
- ALPHA (< 18 / DYN)</p>
- •DIST (NO / < 264)
- NO ZENITH CUT

2 "LE" data cuts

- SIZE < 300</p>
- ALPHA (< 18)</p>
- DIST < 264
- ZENITH (< 20 / NO)</p>

"HE" Effective Areas

- Effective areas from untuned MC.
- Flux from Taka:PL with

 $N = 14.9e-5 \text{ m}^{-2} \text{ s}^{-1}$ TeV⁻¹

Ec = 30 GeV

Index = -3.35

 Diff. Rate peaks at 50-100 GeV

"LE" Effective Areas

- Effective areas from untuned MC.
- Flux from Taka:PL with

 $N = 14.9e-5 \text{ m}^{-2} \text{ s}^{-1}$ TeV⁻¹

Ec = 30 GeV

Index = -3.35

 Diff. Rate peaks at <50 GeV

Expected Excess:

ALL Data

N. Events	8041913
N. On	1690236
N. Off	6351677
N. Excess	1815 +- 1462
H. Sign. (sigma)	0.2
Li Ma Sign. (sigma)	1.2

Winter 2006-2007 Data

N. Events	606100
N. On	127177
N. Off	478923
N. Excess	-132 +- 401
H. Sign. (sigma)	0.7
Li Ma Sign. (sigma)	0.3

Winter 2007-2008 Data

N. Events	3468800
N. On	728342
N. Off	2740458
N. Excess	-134 +- 960
H. Sign. (sigma)	0.1
Li Ma Sign. (sigma)	0.1

Winter 2008-2009 Data

N. Events	3964910
N. On	834270
N. Off	3130640
N. Excess	2074 +- 1027
H. Sign. (sigma)	1.9
Li Ma Sign. (sigma)	2.0

Results: dist < 264, alpha < 18

N. Events	5498717
N. On	1155039
N. Off	4343678
N. Excess	390 +- 1209
H. Sign. (sigma)	0.1
Li Ma Sign. (sigma)	0.3

N. Events	1736305
N. On	365519
N. Off	1370786
N. Excess	1132 +- 680
H. Sign. (sigma)	0.7
Li Ma Sign. (sigma)	1.7

Results: dist < 264, alpha dyn

Results: dist < 264, alpha < 18, no lower size cut

N. Events	9664427
N. On	2029189
N. Off	7635238
N. Excess	-431 +- 1602
H. Sign. (sigma)	0.2
Li Ma Sign. (sigma)	0.3

Results: dist < 264, alpha < 18, no lower size cut, zenith < 20

N. Events	5788181
N. On	1215546
N. Off	4572635
N. Excess	-35.43 +- 1240
H. Sign. (sigma)	1.4
Li Ma Sign. (sigma)	0.0

Upper limits

Upper Limits on the excess events, from ALL Data

Trial	Expectation	UL 90%	UL 95%
No dist, alpha < 18	3363.41	5451.52	6697.3
Dist < 264, alpha < 18	2936.48	2842.73	3559.69
No dist, alpha dyn	2689.86	3003.78	3679.98
Dist < 264, alpha dyn	2323.34	2279.45	2795.44
No lower, alpha < 18, dist < 264	6429.58	2551	3306.36
No lower, alpha < 18, Dist < 264, zenith < 20	4892.09	2416.82	3071.17

- The present "HE" data can't exclude at 95% C.L. Taka's model. If we take into account the "LE" data, it can.
- Two of the "HE" trial cut sets can exclude it at 90% C.L.
- Errors in the testing model were not considered.

Conclusion

- A search for a pulsed emission from the Crab Pulsar in the MAGIC L1 data has been performed.
- The relatively well-understood energy range above 50 GeV, and the lowest energies were searched for separately.
- The data has been selected from the standard data sets, using cuts on rate and mean image parameters file by file.
- Different sets of cuts were tried, however no significant periodicity was found.
- The upper limits found however do not pose a very strict constraint on Taka's Power Law model.
- Proper MC might be needed to constrain it.

Additional Checks

Phasing of the events: checked with TEMPO2
 Phase diff PSEARCH - TEMPO2

