
Multi-level Parallel Fit Algorithms Using
MPI and CUDA
SuperB Software R&D Workshop, 8-12 March 2010, Ferrara, Italy

Karen Tomko1, Adam Simpson2, Rolf Andreassen2, Mike Sokoloff2,
Brian Meadows2

1Ohio Supercomputer Center
 Ohio State University
 Columbus, Ohio, USA
 ktomko@osc.edu

2Physics Department
 University of Cincinnati
 Cincinnati, Ohio, USA

1

•  Modern heterogeneous computing systems
•  Negative Log Likelihood (NLL) examples

•  Simple Gaussian
•  Breit-Wigner convoluted with a Gaussian

•  Conclusions

Topics

Modern Clusters
Computing model

•  OSC’s Bale Visualization Cluster
–  18 nodes populated with:
–  2 AMD 2.6GHz Dual-Core

Opteron CPU's
–  8 GBs of RAM
–  750 GB SATA hard disk
–  Infiniband Dual Port HCA

card
–  2 Tesla C1060 cards per

node, on 8 of the nodes

2

•  Tesla C1060
–  Global memory: 4GB
–  No. of Multiprocessors: 30
–  Number of cores: 240
–  Constant memory: 64KB
–  Shared memory: 16KB
–  Registers available per

block: 16K
–  Clock rate: 1.30 GHz

•  Cuda 2.3

Negative Log Likelihood (NLL) Example

TMinuit implementation of the MINUIT maximum likelihood fitting code
found in the ROOT package from CERN

Three steps1:
1.  calculating the negative log likelihood (NLL) for a set of fitting parameters -- a

sum over all of the events (or elements in the measurements array)
2.  calculating the normalization of the probability density function (PDF) -- a

function only of the fitting parameters, whose calculation can be very slow if
no analytic expression is available for the integral;

3.  the minimization of NLL -- (implemented in MIGRAD) requires a gradient
calculation, i.e., the calculation of derivatives with respect to the number of
free parameters.

1 from A. Lazzaro and L. Moneta, MINUIT Package Parallelization and applications using the RooFit
Package, Proceedings of XII Advanced Computing and Analysis Techniques in Physics Research
(2008).

3

NLL Hybrid CUDA/MPI Implementation

•  Cuda design (Adam Simpson)
•  Fundamental operation on each event

•  Summation over all events based on CUDA reduction example
•  Tree-based reduction algorithm, Log2 N steps

•  The MPI/CUDA hybrid design
•  One GPU device per MPI process
•  Partition measurement array (events) evenly across MPI

processes
•  Perform summation on GPU for events local to a process
•  Sum across MPI processes using MPI_AllReduce

4

€

f (x,x0,σ) = log AeB x−x0()2() , A = 1
2π σ

, B = −1
2σ 2

Simple Gaussian CUDA/MPI results

5

Execution time comparisons

CUDA: 1 GPU vs. CUDA-MPI 8 GPUs MPI: 1 vs. 8 CPUs

About 90x over 1
CPU core

More than 300x
over 1 CPU core

A more challenging case: Breit-Wigner
convoluted with a Gausian (Voigtian)

•  Implementation approach is the same

•  Voigtian function replaces simple Gaussian
•  Breit-Wigner equation:

•  The convolution:

•  Free parameters:
•  Complex error function, Faddeeva_2 from Matpac

•  Why more challenging:
•  Code complexity is greater than simple Guassian
•  More computations and complex arithmetic
•  Local coefficient arrays
•  Data dependent branches

6

€

f (x,x0,g) = 1
x−x0()2 + 1

4 g
2

€

f (x,x0,g,σ) = 1
x−x0()2 + 1

4 g
2 ⊗ AeB x−x0()2 , A = 1

2π σ
, B = −1

2σ 2

€

x0 = 2.0 , g = 0.001,σ = 0.001

Breit-Wigner convoluted with a Gaussian
CUDA/MPI results

•  Still a work in Progress
•  CUDA and MPI versions running, hybrid CUDA/MPI not yet

complete

7

•  Problems:
•  High register requirements resulting in low utilization of GPU cores
•  Some divergent branching due to conditional statements in the

complex error function

About 45x over 1
CPU core

Possible Improvements:

•  Look up table based implementation
•  e.g. FastAlgorithm in RooVoigtian

•  Parameterize the coefficient arrays

•  Investigate ptx code (assembly) to identify problems, try to
fix at CUDA level

•  Next generation NVIDIA Fermi and CUDA 3.0 and features
will help

•  Register pressure relief (32K registers per SM)
•  Branch prediction and predicated instructions can reduce cost of

divergent branches

8

Conclusions:

•  Investigated GPU acceleration of HEP software
•  Two levels of parallelism, MPI and CUDA GPU
•  Fit algorithms: Simple Gaussian and Breit-Wigner convoluted with

a Gaussian
•  Events processed and summed in parallel

•  Results
•  2 orders of magnitude reduction in runtime demonstrated for

simple Gaussian
•  Significant reduction in runtime for Breit-Wigner convoluted with a

Gaussian, but only ½ the improvement of the simpler case

9

Conclusions:

•  Next Steps (with Adam Simpson, Rolf Andreassen)
•  Investigate alternatives for improving the Breit-Wigner convoluted

with a Gaussian case
•  Try OpenCL for these fit algorithms
•  Develop a fitting package along the lines of RooFit to take

advantage of these parallelization schemes

• Outlook with NVIDIA Fermi looks even brighter
•  Faster: 2X single precision, 8.5X double precision
•  ECC memory
•  Support for more of C++

10

