

Visualizations and interfaces for end users

Super-B Computing R&D Workshop Ferrara, Italy

M. Bellis

Department of Physics Stanford University

Mar. 11th. 2010

Matt Bellis March 2010 Visualizations

Prepare your laptops!

Links you may want to have open.

http://vpython.org/ http://www.assembla.com/wiki/show/viewpoints http://www.slac.stanford.edu/~bellis/viewpoints_demo.html http://www.slac.stanford.edu/~bellis/data_formats.html http://en.wikipedia.org/wiki/Extreme_Programming

Links you may want to download to your desktop

http://www.slac.stanford.edu/~bellis/HEP_data_for_education/video_Y3S_to_hb.mpg http://www.slac.stanford.edu/~bellis/HEP_data_for_education/video_BtoDpi_PID.mpg http://www.slac.stanford.edu/~bellis/HEP_data_for_education/video_PID_process.mpg http://www.slac.stanford.edu/~bellis/HEP_data_for_education/viewpoints_usage.mpg http://www.slac.stanford.edu/~bellis/HEP_data_for_education/vst_lumi_0.ogg

OUTLINE

Introduction

2 4-vector viewers

- 3 LASS EXPERIENCE
- 4 Musings

Introduction

- Much of this has come out my efforts in:
 - Outreach and education (public, high school)
 - Training undergraduate students.
 - Training graduate students.
- Not exactly the same, but similar challenges.
- Training a new collaborator, whether undergrad or post-doc, presents challenges.
- How do you get them contributing as soon as possible?

Introduction

- 4-vector viewers.
 - Developing animations to better understand complex physics.
- Viewpoints
 - NASA package for visualizing multi-variate datasets.
- LASS
 - Experience resurrecting a 30-yo dataset.
- General comments.
 - My opinions based on Jefferson Lab (CLAS, GlueX) and BaBar experience.
 - Extreme programming.

4-vector viewers

ANIMATIONS

FIGURE:

Introduction

4-vector viewers.

- Developing animations to better understand complex physics.
- http://vpython.org/
- 3-D visual package.
- Python interface.
- Used in many university physics programs.
- I read in from text files created from our root ntuples.
- For now I show you some movies made from these scripts.
- These are also uploaed to the Indico workshop site.

http://www.slac.stanford.edu/~bellis/HEP_data_for_education/video_Y3S_to_hb.mpg http://www.slac.stanford.edu/~bellis/HEP_data_for_education/video_BtoDpi_PID.mpg http://www.slac.stanford.edu/~bellis/HEP_data_for_education/video_PID_process.mpg

VIEWPOINTS

Viewpoints

Matt Bellis

March 2010

CURRENT EFFORT

http://www.assembla.com/wiki/show/viewpoints http://www.slac.stanford.edu/~bellis/viewpoints_demo.html

WHAT IS VIEWPOINTS?

- NASA analysis tool.
- Viewpoints (vp) is a high-performance visualization and analysis tool for large, complex, multidimensional data sets.
- It allows interactive exploration of data in 100 or more dimensions with sample counts, or the number of points, exceeding 10⁶ (up to 10⁸ depending on available RAM).
- Viewpoints was originaly created for use with the extremely large data sets produced by current and future NASA space science missions, but it has been used for a wide variety of diverse applications ranging from aeronautical engineering, quantum chemistry, and computational fluid dynamics to virology, computational finance, and aviation safety.

11 / 31

Matt Bellis March 2010 Visualizations

WHAT IS VIEWPOINTS?

- http://www.slac.stanford.edu/~bellis/viewpoints_demo.html
- http://www.slac.stanford.edu/~bellis/HEP_data_for_education/viewpoints_usage.mpg
 - Demo video is uploaded to Indico workshop page.
- Multivariate analysis
- Event shape variables and discriminating variables.
- Viewpoints is not a replacement for ROOT...but can augment your analysis and learning process.
- Cuts should never be decided upon using Viewpoints, but can perhaps help provide a more intuitive understanding of your analysis.
- We can't underestmate the importance of developing that intuition within the collaboration.
- You must try this tool out on your own data!

12 / 31

Matt Bellis March 2010 Visualization

PAIR PRODUCTION

LASS experience

Data formats

- http://www.slac.stanford.edu/~bellis/data_formats.html
- File formats.
- Consider documentation.
 - man
 - man pages in use starting in 1971.
 - Huge boon to always have documentation at fingertips.
 - Imposed pseudo-requirements on programmers.
 - FITS (Flexible Image Transport System)
 - Used in astro community.
 - Header with information about the image.
 - \bullet Many implementations: Fortan, C/C++, Perl, Python, Java, etc.
 - Can even read with gimp or Photoshop.
 - I want a file format that carries its own documentation around with it.

DATA FORMATS

- How can I learn from this?
- Both for collaboration analysis and outreach efforts.
- Try converting LASS data.
 - Fixed target SLAC experiment.
 - 11 GeV K^+/K^- beams on hydrogen target.
 - 1977-1978, 1981-1982
 - $\bullet~\sim$ 100M triggers.
 - David Aston (SLAC) revived the data.
 - "The original format (in fact, still is the format, since the files are just straight bit-copies of the originals) is IBM VBS – "Variable Blocks Spanned"
 format, processed with VM/CMS; big-endian with IBM's mainframe floating point format (not IEEE)."
 - David gave me text files...

LASS TEXT FILES

```
new EVENT: run event hw & sw triggers
                                         9550
                                                       18 8E18
Topology: 1
Vertices tracks: 1.5
 Primary vtx: x v z d^2
                         -0.763999999 -0.40200001 81.5400009 0.0351999998
Beam charge px py pz : 1 -0.00964925718 0.00366006303 10.9029951
tracks/charge px pv pz :
3 0.00761500327 0.309128046 8.70612812
5 0.133273423 -0.16253081 0.656466305
2 0.0946368724 -0.149057582 0.53865546
-1 -0 0939974785 0 214401409 0 689579844
Topology: 2
Vertices tracks: 2 4
 Primary vtx: x y z d^2 -0.786000013 -0.375999987 80.5699997 0.0177999996
Beam charge px py pz : 1 -0.00964925718  0.00366006303  10.9029951
tracks/charge px py pz :
3 0 00738755707 0 309133559 8 70612812
2 0.0962994769 -0.147988901 0.53865546
0 0.037703827 0.0509431213 1.34604621
 Secondary vtx: x v z d^2
                           -0.858938336 -0.303011149 81.9899979
0.00257943221
daughters/charge px py pz :
5 0.13265042 -0.163039669 0.656466305
-1 -0 094946593 0 213982791 0 689579844
 new EVENT: run event hw & sw triggers
                                         9550
                                                 91
                                                       18
                                                           CE1C
Topology: 1
Vertices tracks: 15
```

Convert to XML...

LASS XML FILES

LASS XML FILES

LASS XML FILES

March 2010

18 / 31

DATA FORMATS

- Can we replicate this in ROOT?
- Suggestion from Rene Brun: GetUserInfo in TTree.
- Uses TList to hold anything derived from TObject.
- Define my own standard: TList's of TString's
 - 0th entry: Information about the file.
 - 1st entry: Defines what information is held for each entries.
 - $2^{nd} n^{th}$ entry: Information about the TTree entries.
- Only store int's, float's and arrays of these in the TTree.
- Provide PyRoot script to dump information.

LASS ROOT FILES

LASS ROOT FILES

```
> ./dump_header_info.py LASS_small.root
Information about how this file was generated
Date of creation: Sun Dec 6 02:45:58 2009
Code: ./read_in_and_create_from_text_file_LASS.py
Software version: V0.0
More descriptions about how this file was created or how it is intended to be used.
Description of entries in header
0: Name
1: Units
2: Short description
3: Long description
```

LASS ROOT FILES

```
> ./dump_header_info.py LASS_small.root -a
Information about how this file was generated
Date of creation: Sun Dec 6 02:45:58 2009
Code: ./read_in_and_create_from_text_file_LASS.py
Software version: V0.0
More descriptions about how this file was created or how it is intended to be used.
Description of entries in header
Name
Units
Short description
Long description
run num
                Name: run num
               Units: NO UNITS
  Short description: Run number
   Long description: Run number
event_num
                Name: event num
               Units: NO UNITS
  Short description: Event number
   Long description: Event number within a given run
hw_trigger
               Name: hw_trigger
               Units: HEX
  Short description: Hardware trigger
   Long description: Hardware trigger
```

Matt Bellis

March 2010

Musings

Matt Bellis

March 2010

My past experience

- Jefferson Lab (CLAS, GlueX)
- SLAC (BaBar)
- Computing issues for end-user are lab/experiment independent.
 - How do new analysts come up to speed?
 - Physics?
 - Computing environment?

My past experience

- Common tools are a big help!
 - ROOT
 - CVS, Subversion, make
- People still find ways to make things different.
 - bbrroot, BOS files, srtpath, Scientific Linux
- Everytime we write our own solution, we close ourselves off from the broader computing community.
- Or at least we increase the time to ramp up for new collaborators.
- This has huge implications when it comes to service tasks.
- Most analysts will contribute code at some point.

My past experience

- Every experiment has problems with analysis code bifurcation.
- Why?
 - Code prima donnas.
 - Original code does do what they want.
 - Too difficult to change.
 - Not their native computing language.
 - Original author no longer around.
 - Original code is poorly documented.
 - Very little mandate *not* to duplicate analysis code from within collaboration.

- Extreme programming.
- http://en.wikipedia.org/wiki/Extreme_Programming
 - Emphasizes agile programming.
 - Programming in groups.
 - This means two people at the same keyboard!
 - Unit testing.
 - Write the test case first!
 - My two cents...write the documentation zeroth!

- Almost everyone will contribute code at some point.
- We all spend so much time wading through code to find out what's in our data!
 - "Code is self-documenting"
 - "If you really want to know what's in the ntuple, you have to go to the source code"
 - "You can't enforce documentation."
- Revisiting the LASS experience...
 - Can you enforce that every code that returns user data must also be able to return it's own documentation?
 - This could be stored in some percentage of the files.
 - It could just be links to arxiv postings? Collaboration links?
 - Could you require that this documentation is written first?

- If you have a routine with English, not meta, information embedded...as well as a test suite which was written first, does this allow you to be more flexible?
- If I have written words on what some code should do, I can code that in FORTRAN, C++ or Go if I want.
- If I have a test suite and text files of input and testable output, I can know whether or not my code is equivalent or faster.
- Maybe this isn't scalable...maybe it's a way for this to become scalable?
- In any event, things to think about...

SUMMARY

Thanks for your time

BACKUP SLIDES

BACKUP SLIDES

