
 Overview of the new
technologies and evolution of
storage systems for handling

large volume of data

Giacinto Donvito - INFN-BARI

SuperB R&D Workshop -- Ferrara 2010

outlook

New trends on open source storage software
Overview on Lustre

Lustre architecture and features
Some Lustre examples
Future developments

Hadoop: concepts and architecture
Feature of HDFS
Few HDFS examples

CEPH: a new concept for the storage
Key Features
status and future plans

Conclusions

TRENDS on storage software

Requirements:
CPUs are always much more eager of data, and the
performance of disks are not growing as much as CPUs
Very often the users requires native posix file system

FUSE helps a lot in providing a layer that could be
used to implement “something like” posix filesystem

Scalability is the main issues: what is working with 10
CPUs surely may experience problems with 1000 CPUs
But physics analysis is a particular use case

Lustre

Typical Lustre
infrastructure

 Lustre file-system is a typical parallel file-system in which all the client are able to
use standard posix call to access files

 The architecture is designed in order to have 3 different function that can be spitted
among different host or joined in the same machine:
 MDS: this service hosts the metadata information about each file and its location

 There could be basically one
active MDS per file-system

 OSS: is the service that hosts the
data
 There could be up to 1000 OSS

 Clients: are hosts that are able to
read lustre file-system
 There could be up to 20000

clients in a cluster

Lustre 1.8.2
 All administrative operations can be done using few command line utilities

and the “/proc/” file-system
 The interface is very “admin-friendly”

 It is quite easy to put an OST in read-only
 It is possible to make snapshots and backups using standard linux tool and

features like LVM and rsync
 It is possible to define easily how many stripes should be used to write each

file and how big they will be (this could be configured at a file or directory
level)

 Using SAN it is possible to serve the same OST with two servers and enable
the automatic fail-over

 Very fast metadata handling
 In case of an OST failure only files (fully or partially) contained in that

partition becomes unavailable
 it is still possible to read partially the file in case it is split on few devices

 It is possible to have a “live copy” of each device (for example using DRDB
and heartbeat)
 it is feasible for both data and metadata

 The client caches both data and metadata in kernel space
 (temporarily) failure of a server are not disruptive in case of repetitive

operation
 The cache buffer on the client is shared: this is an advanced if several

processes read the same file
 the size of this buffer could be tuned (by /proc/ file-system)

 It is easy to understand which OST hosts each file
 The performance obtained by the application does not depend on the

version of the library used (this could help when old experiment framework
is still used)

 It is possible to tune the algorithm used in order to distribute the files among
the OSTs, giving more or less importance to the space available on each OST
itself

Lustre 1.8.2

 Using ext4 backend, it is possible to use 16TB OST.
 INFINIBAND supported as network connection
 Standard Posix ACLs are supported: it is possible to use standard

unix tool to manage them
 The ACLs should be enabled “system-wide” (on or off for the whole

cluster)
 On the OSS, it is mandatory to recompile the kernel or it is possible

to use one of few kernels provided from the official web-site
 On the client it is not strictly required
 The "Patchless" client could work basically on every distribution

 Not all the kernel release are fully supported (2.6.16> kernel <= 2.6.30)
 http://wiki.lustre.org/index.php/

Lustre_Release_Information#Lustre_Support_Matrix

Lustre 1.8.2

http://wiki.lustre.org/index.php/Lustre_Release_Information#
http://wiki.lustre.org/index.php/Lustre_Release_Information#
http://wiki.lustre.org/index.php/Lustre_Release_Information#
http://wiki.lustre.org/index.php/Lustre_Release_Information#

 OSS Read Cache:
 It is now possible to cache read-only data on an OSS
 It uses a regular Linux “pagecache” to store the data
 OSS read cache improves Lustre performance when several clients access

the same data set
 OST Pools

 The OST pools feature allows the administrator to name a group of OSTs
for file striping purposes

 an OST pool could be associated to a specific directory or file and
automatically will be inherited by the files/directory created inside it

 Adaptive Timeouts:
 Automatically adjusts RPC timeouts as network conditions and server

load changes.
 Reduces server recovery time, RPC timeouts, and disconnect/reconnect

cycles.

Lustre 1.8.2

Lustre 1.8.2 -- Example

Lustre
MDS

Lustre
OSS
Lustre
OSS
Lustre
OSS

Lustre
OSS

Lustre
OSS

Lustre
OSS

Experiments
Data

Users
Home

Lustre

Worker
Node
Worker
Node
Worker
Node
Worker
Node
Worker
Node
Worker
Node

Worker
Node

User
Interface

User
Interface

User
Interface

User
Interface

Lustre -- HA and HP

!"

!"#$%"&'()$!'*(+,)$!-&').$/*0"1)&

HEP Tier2

 It is possible to use the file system to run job hosting both input
and output files

 The rate are measured with real “root” analysis jobs.
 SRM/gridftp layer provided by StoRM

250TB
10 server

800 concurrent
jobs

Read: Up to 1.3GByte/s

Lustre FUTURE

ZFS back-end support:
end-to-end data integrity
SSD read cache

Changelogs
Record events that change the filesystem namespace or
file metadata.

lustre_rsync
provides namespace and data replication to an external
(remote) backup system without having to scan the file
system for inode changes and modification times

Lustre -- at a
supercomputing centre

!"#$%&'()*+,$&-*+./&+(&'0%&1$,$%230*,&456&7)*/28)#&&9::;

!"#$%&'($')*++',&%-.%/(01&'
! -<66&*+%,$*&2=2($>&?&8+2&)32$*@$A&BC&DEF2$.&(8*)0,8#0(

! -8$=&02$&G:&'0%&HI*$&JBG::&2$*@$*2&+2&"''

! <&2I%,K$&+##&+.8I$@$A&LG&DEF2$.&(8*)0,8#0(

“Typical numbers for a high-end MDT node (16-core,
64GB of RAM, DDR IB) is about 8-10k creates/sec, up
to 20k lookups/sec from many clients.”

hadoop

Hadoop: concepts and
architecture

Moving data to CPU is costly
Network infrastructure
And performance => latency

Moving computational to data could be the solution
Scaling the storage performance, following the increase of
computational capacity, is hard
Increasing the number of disks together with the number
of CPU could help the performance
There is the need to take into account machines failures in
a computing centre
DB also could benefit from this architecture

Hadoop: highlight
It is developed till 2003 (born @google)
It is a framework that provide: file-system,
scheduler capabilities, distributed database
Fault tolerant

Data replication
DataNode failure is ~transparent
Rack awareness

Highly scalable
It is designed to use the local disk on the worker
nodes

Java based
XML based config file

Hadoop: highlight

Using FUSE => some posix call supported
Basically “all read operation” and only “serial write
operations”

Web interface to monitor the HDFS system
Java APIs to build code is data location aware
CKSUM at file-block level
SPOF: metadata host
HDFS shell to interact natively with the file system
Metadata hosted in memory

sync with the file-system
it is easy to do back-up of the metadata

Hadoop: concepts and
architecture

! !

!"#$%&'(%)(#()*+,(-.*$,

/012(3+*,"$

4+*,"$("%5,

6#&,(6%5,
4.,#$,()*+,

4+%7,()*+,

0#$#(6%5,

0#$#(6%5,

0#$#(6%5,

2+*5,(*"78*.,5(9':(;/#5%%8(<(=>,(5,)*"*$*?,(@A*5,BC(=%&(D>*$,C(EFG,*++'

D.*$,(8#3H,$

!3H(8#3H,$

Hadoop: concepts and
architecture

! !

!"#$%&'()*+

,'()*+%*-.)

/01)%/-.)
23)*%4(')

,'-5)%4(')

"0+0%/-.)

"0+0%/-.)

"0+0%/-.)

$'(.)%(*53(6).%789%:!0.--3%;%<=)%.)4(*(+(>)%?@(.)AB%<-1%C=(+)B%2DE)(''8

E)0.%7'-&F5

E)0.%7'-&F5

E)0.%7'-&F5

G*0+-18%-4%0%4(')%6)0.

 Splitting files in
different pools may
give performance
benefit when
reading them back

 having the data
replicated could be
of help

Hadoop: concepts and
architecture

! !

!"#$%&'()*+,-*./%$-0,-'12

$)*3'%*/4(*0'3%526%7!,3..(%8%9:'%3';*/*-*<'%1=*3'>?%9.@%A:*-'?%BC&'*))2

",-,+'/-'0

&,+D &,+D

Hadoop: concepts and
architecture

! !

!"!!#!!!$! %!&'())*+! %!,!+!-!(!.!+
!"#$"#

%&'"(#

%&'"(#

)*$"#

+!,-(.#!./-#-0
1"#$"#'.-.(!#.(&''./-#-0
1"#$"#.,-*.,2&-$(3.4!5&0

62"77(&.'!%#'.)*$"#.83.9&30
:&/",&'.!"#$"#.');*)7),-*#(30

Hadoop: few examples

10x data
~6x time

Per node: 2 quad core Xeons @ 2.5ghz, 4 SATA disks, 8G
RAM (upgraded to

16GB before petabyte sort), 1 gigabit ethernet.
Per Rack: 40 nodes, 8 gigabit ethernet uplinks.

“Sort Exercise”

Hadoop: few examples
“CMS example”

•2.5TB < Each DataNode < 21TB
•~600 Core
•SRM/gridftp layer provided by FUSE and BestMan

Up to 8GByte/s

Up to 350 ops/s

HADOOP: FUTure

Support for “append”

Support for “sync” operation

Cluster NameNode

CEPH

CEPH: concept and
architecture

Designed to be scalable, reliable, fast
avoid SPOF
avoid shared disk (SAN, etc => too expensive)

Data Placement is realized by means of “hash functions”:
Location of data is calculated => no lookup tables

9

Ceph data placement

! Files striped over objects

! 4 MB objects by default

! Objects mapped to placement
groups (PGs)

! pgid = hash(object) & mask

! PGs mapped to sets of OSDs

! crush(cluster, rule, pgid) = [osd2, osd3]

! ~100 PGs per node

! Pseudo-random, statistically uniform

distribution

…

… … … …

OSDs

(grouped by

 failure domain)

Objects

PGs

…File

! Fast– O(log n) calculation, no lookups

! Reliable– replicas span failure domains

! Stable– adding/removing OSDs moves

few PGs

this means: unstable
mapping and adding disk
servers means reshuffling
“Rules” driven by replica:
“three replica should be in
different cabinet”

CEPH: concept and
architecture

6

A simple example

! fd=open(”/foo/bar”, O_RDONLY)

! Client: requests open from MDS

! MDS: reads directory /foo from object store

! MDS: issues capability for file content

! read(fd, buf, 1024)

! Client: reads data from object store

! close(fd)

! Client: relinquishes capability to MDS

! MDS out of I/O path

! Object locations are well known–calculated

from object name

MDS Cluster

Object Store

Client

CEPH: concept and
architecture

Intelligent server: replicate data, migrate object, detect
node failures

this could happen because everyone know where
object belongs

inodes are stored together with the directory object: you
can load complete directory and inodes with a single I/O
(“find” or “du” are greatly faster)
It is easy to build a cluster of metadata servers (MDS)

Than it is scalable and adaptive
The work is moved from busy servers to idle ones

CEPH: concept and
architecture

Up to 128 MDS nodes and
250kops/s
I/O rates of potentially many
TB/s
File system containing many
petabytes of storage

25

Dynamic subtree partitioning

! Scalable
! Arbitrarily partitioned metadata, 10s-100s of nodes

! Adaptive
! Work moved from busy to idle servers
! Popular metadata replicated on multiple nodes

Root

Busy directory fragmented across many MDS’s

MDS 0

MDS 1

MDS 2

MDS 3

MDS 4

27

Failure recovery

! Nodes quickly recover
! 15 seconds—unresponsive node declared dead
! 5 seconds—recovery

! Subtree partitioning limits effect of individual failures on rest of cluster

28

Metadata scaling

! Up to 128 MDS nodes, and 250,000 metadata ops/second

! I/O rates of potentially many terabytes/second

! File systems containing many petabytes of data

CEPH: concept and
architecture

Subtree based usage accounting (half the work of a quota
system)
Near-posix, strong consistency
Support snapshots
kernel > 2.6.25 is required

or is there a FUSE client

29

Recursive accounting

$ ls -al

drwx------ 1 root root 5438384 Oct 20 14:51 ./

drwx------ 1 root root 5438387 Oct 20 14:51 ../

drwxr-xr-x 1 root root 2342034 Apr 20 2009 ghostscript/

drwxr-xr-x 1 root root 276961 Apr 20 2009 libthai/

drwx------ 1 root root 2817666 Oct 20 14:51 python-support/

drwxr-xr-x 1 root root 1723 Apr 20 2009 readline/

$ getfattr -d libthai

file: libthai

user.ceph.dir.entries="3"

user.ceph.dir.files="3"

user.ceph.dir.rbytes="276961"

user.ceph.dir.rctime="1256075461.95929000"

user.ceph.dir.rentries="4"

user.ceph.dir.rfiles="3"

user.ceph.dir.rsubdirs="1"

user.ceph.dir.subdirs="0"

! Subtree-based usage accounting
! Solves “half” of quota problem (no enforcement)

! Recursive file, directory, byte counts, mtime

CEPH: FUTURE WORK

Focus on:
OSD performance
Stability
Reliability
Cluster MDS

Conclusions
Lustre Hadoop Ceph

Posix Functionalities True Partially Partially
Quota True Directory Quota Not enforced

Data Replica Not easy True True
Metadata Replica Not natively Not natively True
Resilient on SPOF Not natively Not natively True
Management Cost Low Could be costly Could be costly

Platform Supported SLC4/5 - Suse Linux Every Platform Debian - Suse Linux

Installation procedure Easy Quite easy Not so easy

Doc/Support Good Quite good Need to be improved

Hep experience Fairly good Just starting now No experience

Conclusions
Lustre born in the HPC environment can guarantee good
performance on standard servers (SAN or similar)

completely posix compliant
the scalability seems guaranteed from the biggest installation in
supercomputing centres, but the use case are different from the HEP
analysis

Hadoop can provide needed performance and scalability by means
of commodity hw

maybe it requires more man power to manage it
not fully posix compliant
Is not easy to use MapReduce on HEP code, it could be an
interesting development?

CEPH is based on very good ideas and it could become a good
option if it proves the needed stability and reliability

Backup slides

Data Buffering
System

(Dcache, Castor,
Xrootd)

Parallel File
System

(GPFS, Hadoop,
CEPH)

servers

Disks

Data files

Lustre

Lustre -- INstallation
rpm -ivh lustreldiskfs-3.0.6-2.6.9_67.0.22.EL_lustre.1.6.6smp.i686.rpm
lustre-modules-1.6.6-2.6.9_67.0.22.EL_lustre.1.6.6smp.i686.rpm kernel-lustre-
smp-2.6.9-67.0.22.EL_lustre.1.6.6.i686.rpm lustre-1.6.6-2.6.9_67.0.22.EL_lustre.
1.6.6smp.i686.rpm e2fsprogs-1.40.11.sun1-0redhat.i386.rpm
#!!!!!!reboot!!!!!!
mkfs.lustre --fsname=lustre --mdt --mgs /dev/sdb1
mkdir -p /mnt/test/mdt
mount -t lustre /dev/sdb1 /mnt/test/mdt
cat /proc/fs/lustre/devices
mkfs.lustre --fsname lustre --ost --mgsnode=${mdt_server}@tcp0 /dev/sdc
mkdir -p /mnt/test/ost0
mount -t lustre /dev/sdc /mnt/test/ost0
mkdir /lustre
mount -t lustre ${mdt_server}@tcp0,1@elan:/lustre /lustre

Lustre -- FEW CLI EXAMPLE
lfs df [-i]
UUID 1K-blocks Used Available Use% Mounted on
lustre-MDT0000_UUID 27226500 1950044 23720488 7% /lustre[MDT:0]
lustre-OST0000_UUID 2884113492 1310544468 1427064248 45% /lustre[OST:0]
lustre-OST0001_UUID 2402260432 1104465044 1175765056 45% /lustre[OST:1]
......
filesystem summary: 201971633276 91551804884 100160181456 45% /lustre

echo '64' > /proc/fs/lustre/llite/*/max_cached_mb
echo '64' > /proc/sys/lustre/max_dirty_mb

lfs setstripe -c 10 -p pool_name -d /lustre/directory
lfs getstripe [-r] /lustre/directory [/lustre/directory/file1]
lfs getstripe -r --obd lustre-OST004e_UUID /lustre > /tmp/list_files

lctl pool_new <fsname>.<poolname>
lctl pool_add <fsname>.<poolname> <ostname indexed list>
lctl pool_list <fsname>[.<poolname>] | <pathname>

lfs quotaon -ug /lustre
lfs quotacheck -ug /lustre
lfs setquota -u [-g] <name> <block-softlimit> <block-hardlimit> <inode-softlimit>
<inode-hardlimit> /lustre

tail -f /var/log/messages
Dec 3 05:36:41 lustre01 kernel: LustreError: 4478:0:(import.c:
909:ptlrpc_connect_interpret()) lustre-OST0048_UUID went back in time (transno
8590306664 was previously committed, server now claims 0)! See https://
bugzilla.lustre.org/show_bug.cgi?id=9646
Dec 3 05:36:41 lustre01 kernel: LustreError: 4478:0:(import.c:
909:ptlrpc_connect_interpret()) Skipped 1 previous similar message
Dec 3 05:36:41 lustre01 kernel: Lustre: 4478:0:(quota_master.c:1680:mds_quota_recovery
()) Only 81/79 OSTs are active, abort quota recovery
Dec 3 05:36:41 lustre01 kernel: Lustre: lustre-OST0048-osc: Connection restored to
service lustre-OST0048 using nid 212.189.205.106@tcp.

Lustre -- FEW CLI EXAMPLE

https://bugzilla.lustre.org/show_bug.cgi?id=9646
https://bugzilla.lustre.org/show_bug.cgi?id=9646
https://bugzilla.lustre.org/show_bug.cgi?id=9646
https://bugzilla.lustre.org/show_bug.cgi?id=9646

pwd
/proc/fs/lustre/llite/lustre-ffff8101264f5c00
ls
blocksize fstype max_read_ahead_mb statahead_stats
checksum_pages kbytesavail max_read_ahead_whole_mb stats
contention_seconds kbytesfree max_rw_chunk stats_track_gid
dump_page_cache kbytestotal mdc stats_track_pid
extents_stats lazystatfs offset_stats stats_track_ppid
extents_stats_per_process lockless_truncate pgcache_balance uuid
filesfree lov read_ahead_stats
filestotal max_cached_mb statahead_max

Lustre -- FEW CLI EXAMPLE

Lustre Possible scenario

SRM
Frontend

MySQL
server

StoRM
backend

Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage Storage
node Lustre

MDS

~20 disk servers

GridFTP
door

Hadoop -- INstallation
wget http://mirror.nohup.it/apache/hadoop/core/stable/
hadoop-0.20.2.tar.gz
tar xfvz hadoop-0.20.2.tar.gz
mkdir -p /hadoop/namenode_dir
mkdir -p /hadoop/datanode_dir
cd hadoop-0.20.2
(modify configuration files)
conf/hadoop-env.sh
conf/slaves
conf/hdfs-site.xml
conf/core-site.xml
conf/masters
./bin/hadoop namenode -format
./bin/start-all.sh

http://mirror.nohup.it/apache/hadoop/core/stable/hadoop-0.20.2.tar.gz
http://mirror.nohup.it/apache/hadoop/core/stable/hadoop-0.20.2.tar.gz
http://mirror.nohup.it/apache/hadoop/core/stable/hadoop-0.20.2.tar.gz
http://mirror.nohup.it/apache/hadoop/core/stable/hadoop-0.20.2.tar.gz

Hadoop -- FEw CLI

./bin/hadoop dfsadmin -refreshNodes
./bin/hadoop dfsadmin -report
./bin/hadoop balancer
./bin/hadoop dfsadmin -safemode leave
./bin/hadoop fsck / -files

