
Offline / Online
Connection

Steffen Luitz, SuperB Computing R&D Workshop,
Ferrara, March 2010

Wednesday, March 10, 2010

From BaBar Experience
Some Talking Points

Components in Online
Code Management, Release and Build System
Data Format & Dependency Management
Online vs. Offline Paradigms
Shared Code
Performance / Quality Control
Bookkeeping

Wednesday, March 10, 2010

“Hardware” Trigger

Event Builder

Software Triggers/
Filters

FCTS

Experiment /
Run

Control System

Detector/”Slow”
Control System

Data Quality
MonitoringDetector Readout

Systems

Data Persistency

Bookkeeping

Databases
Configuration
Conditions
Ambient
Inventory

Computing
Infrastructure

File Servers,
SysAdmin, etc.

Performance
Monitoring

Code &
Release
Mgmt

Execution
Frameworks

Networks

Machine
Interface

Code

GUIs
Visualizati

on

Wednesday, March 10, 2010

Code Management,
Release+Build System (1)

BaBar
 “2 1/2” different release + build systems

Dataflow build system (embedded + regular)
“Online Releases” - RT (standard BaBar Software Release Tools) but special
Base SRT releases

Some of the Issues
Online usually fairly close to the head (driven by ongoing improvements)
Impractical code dependencies (Online on top of SRT Base) and complex
dependency management (what goes where, etc.). Online, where you want most
flexibility & agility depended on this huge blob of SRT base
Search path overlays can be dangerous
Several attempts to improve - never high priority

Opportunity for R&D in code organization
Code organization (peer modules) as well as runtime (dynamic loading)
Some ideas are already there

Wednesday, March 10, 2010

Code Management
Release+Build System (2)

Other areas of interest
Configurable firmware in more and more places (embedded
processors, FPGA configurations, etc.)

Need to manage & track - What should be integrated with release mgmt?

Scripts, glue code, computer configurations
ditto

Especially Online needs to be able to “test” deploy and back out
quickly

More automation than BaBar (path / symlink based scheme) seems desirable
With only O(100) HLT nodes in SuperB - tractable problem

Wednesday, March 10, 2010

Data Format +
Dependency Mgmt (1)
Data format (or semantics) or database schema changes
are always difficult

Fundamental problem: Have to deploy code that understands the
new format / schema before deploying code that produces data
in that format

Unfortunate effect in BaBar: Interesting improvements in
Online got delayed for months because downstream
release building and deployment was difficult
SuperB: Attempt to design a system that provides the
necessary agility and flexibility for Online

e.g. Simplify downstream release builds / deployment
e.g. look into how improved forward&backward compatibility
could be achieved

Wednesday, March 10, 2010

Configuration Mgmt /
“Provenance Light”

Strict configuration management across the Online system
is desirable - especially in places where data is
permanently discarded (many places) - very limited in
BaBar

Know and record the physical and logical configuration of “all” components to a
reasonable level of detail
Ensure to a reasonable degree that the actual physical and logical configuration
is what has been requested from the system. Take appropriate actions in case of
deviations
“Provenance light” - understand what was going on after the fact

Design mechanisms to ensure (and record) consistency of
what code is running and how it is configured

Large farms - make sure every machine has the right executables and
configuration. Interesting problem in the presence of multi-level caching.
Beneficial for offline processing - design a common system?
Support versioning of data and configurations for things you want to redo

Wednesday, March 10, 2010

Online / Offline
Paradigms

Boundaries between “Online” & “Offline” are becoming
increasingly blurry.

Computers are getting much faster, so you can do much more
“online”

Code sharing is very attractive

Fundamental difference:

Online is where you (usually) can’t redo things if something
goes wrong!

Wednesday, March 10, 2010

Shared Code
Thoughts from BaBar
Lots of benefits from Online/Offline code sharing
Online paradigms impact how code used by Online must
behave - especially in areas of input validation and error
handling:

Code used in Online often needs to be very robust against malformed input
data. Alert and skip, not segfault & core dump. Impacts all code used in Online.
In Online systems assert() is not always your friend - code needs ability choose
what to do in the face of errors. Exceptions (or similar mechanisms)
Need to propagate errors to higher levels where meaningful decisions can be
made
Restarting from scratch “to reset” is not always acceptable, especially if startup
times are long

True code sharing requires some thought and reliability
engineering

Wednesday, March 10, 2010

Performance & Quality
Control

When running in an Online context, code may run in or
close to the “dead time path”

Careful engineering & testing

Take into account average & worst-case performance

Engineer frameworks that allow to deal with worst-case
e.g. “non-blocking” behavior where appropriate

Overall performance
Ability to fully utilize underlying platform

Multithreading. GPU, other non-uniform architectures, etc.

Quality control
verify code to standards outlined on this & previous slide

Wednesday, March 10, 2010

Bookkeeping & Storage
Some thoughts

Establish Event-independence as early as possible
“linked” events in FE (for overlap & pile-up handling) - unlink in ROM
Event-independence in event builder highly desirable (temp grouping OK)

Do not introduce unnecessary serialization/choke points in the
downstream system

such as e.g. merging run parts into complete run files in BaBar

Avoid format conversions / reformatting (“raw” data format)
Over the SuperB lifetime, storage media may significantly
change in characteristics (e.g. Tape, Disk, SSD, ...)

Decouple file / container sizes from data grouping concepts such as “Runs”
Allow for optimization of file sizes - splitting, merging

Is a versioning capability for raw data (e.g. in case of “manual”
repairs or removal of “bad” parts) needed?

I’m tempted to say no - forego the complexity and write-off the data
but then it may come for free from the downstream bookkeeping

Bookkeeping system - shared between Online & Offline
must hide the complexities from users (and apps)

Wednesday, March 10, 2010

