The challenge of adapting HEP physics
software applications to run
on many-core Cpus

SuperB Workshop, March " 10

Vincenzo Innocente

High Performance Computing CERN
for High Energy Physics

Computing in the years Zero

<

Transistors used to increase raw-power Increase global power

10,000,000

L

1,000,000

100,000

Moore’s

10,000

1,000

100 : /
10 ,_/ /

/ ° P = e = .'- -
=] > ‘/
1 / = Trz nsistors (000) |
2 x e Cl« ck Speed (MHz)
e & Po wer (W)
@« Pe fiIClock (ILP)
o 1 | 1

1970 1975 1980 1985 1990 1995 2000 2005 2010

Consequence of the Moore’s Law

Hardware continues to follow Moore’s law

— More and more transistors available for
computation

»

»

»

»

More (and more complex) execution units:
hundreds of new instructions

Longer SIMD (Single Instruction Multiple Data)
vectors

More hardware threading

More and more cores

The ‘three walls’

While hardware continued to follow Moore’s
law, the perceived exponential grow of the
“effective” computing power faded away in
hitting three “walls”:

|.The memory wall
2.The power wall

3.The instruction level parallelism (micro-
architecture) wall

The ‘memory wall’

— Processor clock rates have
been increasing faster than
memory clock rates

— larger and faster “on chip”
cache memories help
alleviate the problem but
does not solve it

— Latency in memory access
is often the major
performance issue in
modern software
applications

32kBL1 32kBlL1 32kBL1 32kBlL1

Data Cache Inst. Cache

Data Cache Inst. Cache

Core 2 (45nm)

Main memory:
200-300 cycles

Core 2 (65nm)

0 10 20 30 40 50

Nanoseconds (lower is better)

HLu HL2 @

The ‘power wall’

— Processors consume more and more power the faster they go
— Not linear:
» 73% increase in power gives just |13% improvement in performance

» (downclocking a processor by about 13% gives roughly half the power
consumption)

— Many computing center are today limited by the total electrical power
installed and the corresponding cooling/extraction power

— Green Computing!

CPU Power Consumption 1993 - 2005

AMD and Intel

& CPU-Frequency 1993 - 2005
Wardwar AMD and Intel

guide

4000

3500
3000

2500

£
2 2
5
=
g

~—Iritel

http://www.processor-comparison.com/power.html

The ‘Architecture walls’

— Longer and fatter parallel
instruction pipelines has been a
main architectural trend in "90s

COMPLETED

|

— Hardware branch prediction,
hardware speculative execution,
instruction re-ordering (a.k.a.
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable
examples of techniques to boost
Instruction level parallelism (ILP)

IN PIPELINE

|

AITING
o

w

Y

— In practice inter-instruction data
dependencies and run-time
branching limit the amount of

achievable ILP

CURRENT CYCLE

3

v

IF

ID

EX

WB

INSTRUCTIONS

4 5 CPU CYCLE

IF

ID

EX

WB

IF

ID

EX | WB

IF

ID | EX | WB

IF | ID | EX || WB

IF

ID

EX

WB

IF || ID || EX || WB

FETCH NEXT INSTRUCTION

DISPATCH INSTRUCTION
TO FUNCTIONAL UNIT
EXECUTE INSTRUCTION
IN FUNCTIONAL UNIT

WRITE RESULT TO REGISTER

Core 2 execution ports

— Intel’s Core
microarchitecture
can handle:

» Four instructions in
parallel:

» Every cycle

» Data width of 128
bits

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Integer Integer
Alu Alu
I | |
Int. SIMD Int. SIMD
Alu Multiply
I I
x87 FP
Multipl
I 2V FP
Add
SSE FP
Multiply
I 1
DIV FSS Move
SQRT & Logic
| |
FSS Move
& Logic QW Shuffle
QW Shuffle

Integer
Load

FP
Load

Store
Address

Store

Data

Integer
Alu

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Jump Exec
Unit

Issue ports in the Core 2 micro-architecture
(from Intel Manual No. 248966-016)

Some Observations Regarding Benefits vs.
Efforts

The number of transistors on a chip doubles every 24 month
Processor architectures changed from area limited to power limited

ILP useful for ~4 parallel instructions

Instruction pipeline useful if < 30 stages

Power consumption grows about cubically with frequency
Processing capability grows faster than memory speed

Single core performance is growing slower than it used to be
SMT/HT can mitigate the situation for certain workloads

CMP/Multi-Core seems to be a reasonable “compromise’
Opportunity for performance to increase faster than Moore’s Law

intel)

Copyright © 2008 Intel Corporation. All rights
reserved.

Go Parallel: many-cores!

— A turning point was reached and a new technology
emerged: multicore
» Keep low frequency and consumption

» Transistors used for multiple cores on a single chip: 2, 4, 6, 8
cores on a single chip

— Multiple hardware-threads on a single core
» simultaneous Multi-Threading (Intel Core i7 2 threads per core
(4 cores), Sun UltraSPARC T2 8 threads per core (8 cores))
— Dedicated architectures:

» GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel
Larrabee)

» CELL
» FPGA (Reconfigurable computing)

Industry Trend to Multi/Many-Core

intel Tera-Scale Computing
[research Program:
Wwww.intel.com/qgo/terascale

Dual-Core

u g ;
| Hyper . QUAD-CORE
Threading

Multi
Processor

Energy Efficient Petascale with Multi-threaded Cores intel.

Copyright © 2008 Intel Corporation. All rights All products, dates, and figures are preliminary and are subject to change without any notice.
reserved.

Intel
Architecture
Core

Copyright © 2008 Intel Corporation. All rights
reserved.

Going Forward

/@ew Materials and Designs

(Core Enhancements

Multi to Many-Core

{Platform Enhancements

Intel
Architecture
Core

Copyright © 2008 Intel Corporation. All rights
reserved.

Going Forward

(Tri—Gate, Nanotubes =2

(MMX - SSE 2 AVX 2

Dual -2 Quad =2 Octo =2

{PCIe, IMC, QPI, SOC -2

Memory and CPU package architectures for
addressing bandwidth challenges

2D Planar MCP 3D Stacked

Die MCP

Package Substrate
CPU
Substrate

BW > | TB/s

Substrate
Embedded
Die MCP

2D Planar MCP
Package Substrate

BW =200 GB/s-1 TB/s

i

e —

Off-Pkg
3D Stacked l BW = 100-200 GB/s
| Memory |

Die MCP CPU

Package Substrate %

Board BW < 100 GB/s

Package Technology to Address the Memory Bandwidth Challenge for Tera-scale Computing, Intel Technology Journal, Volume 11, Issue 3, 2007

Copyright © 2008 Intel Corporation. All rights Future Vision, does not represent real Intel product
reserved.

Tick/Tock: Our Model for Sustained
Microprocessor Leadership

Penryn. Nehalem Westmere S2ndy
Bridge

Compaction/ NEW Compaction/ NEW
Microarchitecture Derivative Microarchitecture Derivative Microarchitecture

65nm 45nm 45nm 32nm 32nm
2006 2007 2008 2009 2010

>
Forecast

e.g. Intel® QuickPath Architecture e.g. Intel® AVX

Copyright © 2008 Intel Corporation. All rights Future options subject to change without notice.
reserved.

Bringing IA Programmability and Parallelism
to High Performance & Throughput Computing

I 3

. IA++ [A++ e [A++ :
Special -- - Highly parallel, IA programmable

Function

& I/0 e architecture in development

Ease of scaling for software

: ccosystem

Array of enhanced IA cores

New Cache Architecture

New Vector Processing Unit
Scalable to TFLOPS performance

intel)

Copyright © 2008 Intel Corporation. All rights Future options subject to change without notice.
reserved.

The Challenge of Parallelization

I”

Exploit all 7 “paralle
for HPC

—Inside a core (climb the ILP wall)

dimensions of modern computing architecture

|. Superscalar: Fill the ports (maximize instruction per cycle)
2. Pipelined: Fill the stages (avoid stalls)
3. SIMD (vector): Fill the register width (exploit SSE, AVX)

—Inside a Box (climb the memory wall)
4. HW threads: Fill up a core (share core & caches)
5. Processor cores: Fill up a processor (share of low level resources)

6. Sockets: Fill up a box (share high level resources)

—LAN & WAN (climb the network wall)

/. Optimize scheduling and resource sharing on the Grid

HEP has been traditionally good (only) in the latter

Where are VWE?

— HEP code does not exploit the power of current processors
» One instruction per cycle at best
» Little or no use of vector units (SIMD)
» Poor code locality

» Abuse of the heap

— Running N jobs on N=8 cores still efficient but:

» Memory (and to less extent cpu cycles) wasted in non sharing
* “static” condition and geometry data

e |/O buffers

* Network and disk resources

» Caches (memory on CPU chip) wasted and trashed
* LI cache local per core, L2 and L3 shared
* Not locality of code and data (thread/core affinity)

— This situation is already bad today, will become only worse in
future many-cores architectures

HEP software on multicore:

an R&D project (wp8 in CERN/PH)

The aim of the WP8 R&D project is to investigate novel software
solutions to efficiently exploit the new multi-core architecture of
modern computers in our HEP environment

Motivation:
industry trend in workstation and “medium range” computing

Activity divided in four “tracks”
» Technology Tracking & Tools
» System and core-lib optimization
» Framework Parallelization
» Algorithm Parallelization

Coordination of activities already on-going in exps, IT, labs

20

Summary of activity in 2008/2009

— Collaboration established with experiments, OpenLab, Geant4 and
ROOT

» Close interaction with experiments (bi-weekly meetings, reports in AF)

» Workshops each “six” months (April, October 2008, june 2009, next june
2010)

— Survey of HW and SW technologies

» Target multi-core (8-16/box) in the short term, many-core (96+/box) in
near future

» Optimize use of CPU/Memory architecture
» Exploit modern OS and compiler features (copy-on-write, MPl, OpenMP)

— Prototype solutions

» In the experiments and common projects (ROOT, Geant4)
* Improved Root-Math, ProofLite, MT-G4, flork&COW in ATLAS and CMS

» In the R&D project itself
* Parallel GAUDI, perfmon instrumentation of Gaudi and CMSSW

F No-HT O Yes-HT
300 :

Parallel Job Performance
with Hyper-Threading

225

e The Computer:
+ coors.Ibl.gov
+ Dual-Xeon X5550@2.67G
+ 8 Cores in total, 24GB Mem
+ Hyper Threading

150

® The obs: 7

+ ATLAS Fast Reconstruction
+ 50 Events per job
+ Each job takes ~2 min.

Number of Physical Cores=8

Total Throughput On the Node (Events per minute)

0 5 10 I5 20
o Tests: Number of Parallel Jobs
+ For each Nin (2,4,6,8, 10, 12, 14, 16, 18,20), run at the same time N parallel jobs, and measure the
time each job takes. Repeat 10 times for more statistics for each N.
+ The throughput is the total number of events the Computer can process when running N parallel
jobs.
+ This is to simulate the scenario of batch node in a cluster.

® Result:
+ With Hyper threading, one can stuff more jobs into the same node to achieve higher throughput
+ Meaning: if our clusters have HT-enabled CPUs, we can let the scheduler over commit jobs within
the limit of memory. For this case, we can process 25% more events.

Wednesday, February 24, 2010

Code optimization

— Ample Opportunities for improving code performance

» Measure and analyze performance of current LHC physics
application software on multi-core architectures

» Improve data and code locality (avoid trashing the caches)
» Effective use of vector instruction (improve ILP)
» Exploit modern compiler’s features (does the work for you!)

— See Paolo Calafiura’s talk @ CHEPOO.
http://indico.cern.ch/contributionDisplay.py?contribld=517&sessionld=1&confld=35523

— All this is absolutely necessary, still not sufficient to take full
benefits from the modern many-cores architectures
» NEED some work on the code to have good parallelization

22

23

Floating Point Math on new CPUs

— Moore’s law and “progress” in compiler technology have made HEP to
focus mostly in (excessive?) accuracy

» Why spending effort in careful optimizations if in the meanwhile computers
gets much faster, hardware changes, compiler gets less stupid?

» The time of free lunches is over!
— We need to re-establish excellence in numerical
computation competence in our field!

» We shall master approximations, vectorization, numerical methods beyond
simple FORmula TRANslation

— Each new computing architecture changes the balance between accuracy
and speed in particular for FP
» The code emitted even for a trivial “1/sqgrt(x)"” depends on machine, OS,
compiler, compiler-option, even on the way we write it!

— One size does not fit all: need of accuracy and speed depends on the
context

» Cannot use global switches, replacement libraries, etc
» We shall be able to select the required accuracy for each single use-case

Optimization of sequentia

/I Energy loss and variance according to Bethe and Heitler, see also

/I Comp. Phys. Comm. 79 (1994) 157.

Il

double p = localP.mag();

double normalisedPath = fabs(p/localP.z())*materialConstants.radLen();
double z = exp(-normalisedPath);

double varz = (exp(-normalisedPath*log(3.)/log(2.))-

exp(-2*normalisedPath));

if (propDir==opposite ToMomentum) {

I for backward propagation: delta(1/p) is linear in z=p_outside/p_inside
theDeltaP += -p*(1/z-1);
theDeltaCov(0,0) += varz/p/p;

lelse {

}

/I for forward propagation: calculate in p (linear in 1/z=p_inside/p_outside)
theDeltaP += p*(z-1);

double f=1./p/z;

theDeltaCov(0,0) += f*f*varz;

24

| FP algos

This code will not become
faster in future (gcc 4.5 will help
a bit with compiler-time
transcendentals)

IF speed is a concern
accuracy needs to be tuned
vectorization/parallelization

have to be accounted for

Vectorization: Features & Challenges

* SIMD computational width

128 bits (current) — 2 doubles or 4 floats

256 bits (2010 - Sandy Bridge) — 4 doubles or 8 floats
512 bits (2011 - Larrabee) — 8 doubles or 16 floats
1024 bits (coming soon) — 16 doubles or 32 floats

e]t makes sense to start now to take it into consideration

developing pilot projects in production environment

* Possible ways of doing it:

- Assembly
- Instrinsics

- Autovectorization
- SIMD-aware programming languages

. Challenges using intrinsics:

- Reorganize your data to scale to increasing vector width
- Rethink your algorithm (do not readapt it!)

Trivial example: matrix-vector multiplication

__ml28 t0
_ ml28 tl
_ ml28 t2
_ ml28 t3

_mm_setl ps(v0()) -
_mm setl ps(vl());
_mm_setl ps(v2())
_mm_setl ps(v3())

mll ml2 ml3 ml4 vl

_mm mul ps(m0, tO0);
_mm mul ps(ml, t1);
_mm mul ps(m2, t2);
_mm mul ps(m3, t3);

m21 m22 m23 m24 v2 0
° t1

t2
m31 m32 m33 m34 v3 t3

__ ml28 rs = mm add ps(tO,
mdl m42 m43 m44 v4 mm_add _ps(t1,

_mm_add ps(t2, t3)));

tl = [mll, m21, m31, m4l] * vl
rl = v1l*mll+v2*ml2+v3*ml3+v4*ml4
t2 = [ml2, m22, m32, m42] * v2
r2 = vli*mz2l+v2*m22+v3*m23+v4*m24
t3 = [ml3, m23, m33, m43] * v3
r3 = vl*m31l+v2*m32+v3*m33+v4*m34
td = [ml4, m24, m34, mdd] * vd4
r4d = vi*mdl+v2*mi42+v3*md3+v4*mi4
R=¢tl + t2 + t3 + t4

Observed speed-up in this example: ~2x (instead of 4x) using floats

PARALLEL ARCHITECTURES
FOR HEP EVENT PROCESSING

27

HEP Application

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

I

|

Application

o~
Q‘>

R
u'd,‘

Manager

Event
Selector

4 Event Data

Service

—

Algorithm

—
v

Detec. Data
Service

Histogram
Service

K_].Event \

=1 Anal

] AxPatCandidates

=1 Me
] MCParticles
] MCTrackerHits
] MCVertices
] Raw

Transient

\Even’r Store /

l

Converter

)

Persistency
Service

Transient
Detector
Store

Persistency
Service

Transient
Histogram
Store

Persistency
Service

29

Experience and requirements

— Complex and dispersed “legacy” software

» Difficult to manage/share/tune resources (memory, I/O): better to rely in
the support from OS and compiler

» Coding and maintaining thread-safe software at user-level is hard

» Need automatic tools to identify code to be made thread-aware
* Geant4: 10K lines modified! (thread-parallel Geant4)

* Not enough, many hidden (optimization) details
— “Simple” multi-process seems more promising

» ATLAS: fork() (exploit copy-on-write), shmem (needs library support)
» LHCb: python

» PROOF-lite
— Other limitations are at the door (I/O, communication, memory)
» Proof: client-server communication overhead in a single box
» Proof-lite: I/O bound >2 processes per disk
» Online (Atlas, CMS) limit in in/out-bound connections to one box

30

Event parallelism

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process!?

CMS:
| GB total Memory

Event Event- Event- Event- Footprint
specific specific specific specific .
data data data data Event Size | MB
Global Sharable data 250MB

ais. Shared code 130MB
Private Data 400MB !!

—> multi-process vs multi-threaded
—> Read-only: Copy-on-write, Shared Libraries

—> Read-write: Shared Memory, sockets, files

31

Exploit Copy on Write (COW)

See Sebastien Binet’s talk @ CHEPO9
— Modern OS share read-only pages among processes dynamically
» A memory page is copied and made private to a process only when
modified
— Prototype in Atlas and LHCb
» Encouraging results as memory sharing is concerned (50% shared)

» Concerns about I/O (need to merge output from multiple processes)

Memory (ATLAS)
One process: 700MBVMem and 420MB RSS

COW:
(before) evt O: private: 004 MB | shared: 310 MB
(before) evt I: private: 235 MB | shared: 265 MB

(before) evt50: private: 250 MB | shared: 263 MB

Exploit “Kernel Shared Memory”

— KSM is a linux driver that allows dynamically sharing identical memory pages
between one or more processes.

» It has been developed as a backend of KVM to help memory sharing between virtual
machines running on the same host.

» KSM scans just memory that was registered with it. Essentially this means that each
memory allocation, sensible to be shared, need to be followed by a call to a registry
function.

— Test performed “retrofitting” TCMalloc with KSM
» Just one single line of code added!
— CMS reconstruction of real data (Cosmics with full detector)

» No code change
» 400MB private data; 250MB shared data; 130MB shared code

— ATLAS

» No code change
» In a Reconstruction job of 1.6GB VM, up to |GB can be shared with KSM

32

33

ATLAS results by Yushu Yao
Comparing FREE Memory (light blue) when running 2 jobs

KSM frees 500MB System Memory

NoKSM 2Job

Time of Running (Second)

Time of Running (Second)

A X 10° 4x 106 KSM NoRandom 2Job
! ! 7 1 = in
f ——Heap-Total —Heap-Total
——-Heap-Res ——-Heap-Res
R e Heap-Shared [R Heap-Shared |-
—Total-VM “—Total-VM
——-Total-Res ——-Total-Res
e Total-Shared |7 1 S — CEEEE Total-Shared |
Used-SWAP Used-SWAP
Free
. 2.5 e """""""""""""""""""""""" . B S Free= T
[0} H (0]
= = %
S || @
= —
= e
o)
= =
~500MB Free Memory S R
Q.8 [o e ~ . SRR TR
N . . | | L
0 200 400 600 0 500 1000 1500

34

Multithreaded Geantd (GeantdMT)

e Event-level parallelism to simulate separate events by multiple threads
e Efficiency for future many-core CPUs

e Testing and validation on today’s 4-, 8- and 24-core nodes

e Preliminary results available based on testing on fullCMS benchl.g4

e Patch parser.c of gcc to output static and global declarations in Geant4
source code and add the “__thread” keyword

e Separate and share read-only data members : Geant4 parameterised
geomeries and replicas, Geant4 materials and particles, Geant4 physics
tables, etc.

e Custom malloc library to support thread private allocation

e Modified G4Navigator to remove unnecessary updates to G4cout and
G4cerr precision (shared variables)

“Multi-core & multi-threading: Tips on how to write “thread-safe” code in Geant4”,

Xin Dong and Gene Cooperman, 14th Geant4 Users and Collaboration Workshop Search,
http://indico.cern.ch/sessionDisplay.py?sessionId=68\&slotId=0\&confId=44566#2009-
and http://indico.cern.ch/conferenceDisplay.py?confId=44566

Experimental Results on 24-core Intel Xeon 7400 Computer

By segregating read-write data members, large read-only memory chunks
are formed. Copy-On-Write does not replicate those read-only chunks.
(Geant4dMT + COW)

e Separate Processes: No reduction for the memory footprint

e Geant4 + COW: Share geometries (no replica or parameterized geometry)
e GeantdMT + COW: Reduce the memory footprint

e Geant4MT: Reduce the memory footprint

Tested on fullCMS benchl.g4 with 24 workers and 4000 events per worker
(electromagnetics).

Implementation Total Memory | Additional | Total Memory | Runtime
on master| Memory (master
per Worker | + 24 workers)
Separate Processes 250 MB 250 MB 6 GB 4575 s
Original Geant4 + COW 250 MB 70 MB 2G MB 4571 s
GeantdMT + COW 250 MB 20 MB 730 MB 4540 s
Geant4dMT 24 threads 250 MB 20 MB 730 MB |4510 s

35

Parallelization of Gaudi Framework

gaudirun.py

@

[InputStream]

' Algorithm

Single Process

o 0 OutputSt
Invisible to User [OutputStream |

Reader

Invisible to User

' Algorithm

Workers Writer

[OutputStream]

36

GaudiPython Parallel: Specifics

{20 Event

-1 Anal

(] AxPartCandidates
B Me

-] MCParticles

(] MCTrackerHits
Cj MCWertices
(] Raw

TES

Reader process

|

Event Input

|

(] AwPartCandidate

C_I.Event
3 Event -3 Anal
E=-E3 Anal [AsPartCandidate
-3 Me

w{7] MCParticles

E]D Mc — :
- (] MCPatticles -
(] MCTrackerHits a | 1 .
¢ L] MCvettices S g
-] Raw 9 g
s O
TES i
—

OutputStream

Writeer process

' Algorithm

Worker processes

— TES transferred by Serialise/Deserialise

— Auto-optimisation of data transfer

37

GaudiPython Parallel

— Reconstruction (Brunel)

» FEST-2009-Data.py : 1000 Events
* From $BRUNELOPTS

Serial 1334 47
parallel=5 317 47
~|.5s/event

Parallel Overhead 3%
Speedup Near-Linear

1287

280

4.6

240N @8Y © 14S-Hd

01/9/¢

U2 uJ49d@)YIws uiod

38

Gaudi : HEP Event Processing

*Transient Event
Store : Part of
Framework

*Stores DataObjects

/ \ Data T1

during processing
—e T *Loaded from
Data T2 Persistent Storage at
Data T3 S tart
Pt Bl Date 17 : *Constantly modified
Data St ﬂ[gorltﬁm
ata Store Data T4 during run
Data T3, T4 Data T4
" Algorithm
—naa > C o —

Real dataflow

—
Data T5 U

39

HEP data processing:
beyond event-by-event processing

— No need of a coherent event state:
» The “Event” occupies a small part of the resident memory
* Small overhead to keep several event in memory at once
» Algorithms

* read specific event-fragments, store new fragments: never modify
existing ones

* Dependencies are known: algorithms can be scheduled in parallel

* We can distribute algorithms among cores, improving data and code locality
in caches

» Storage:

* “Event-Fragments” map root branches: independent of each other

* Can be streamed as soon as created, no need to wait for the full event to be
ready

— Conditions shared among events and (some) algorithms
» Event parallelism will profit of coherent shared conditions
» Few conditions are used by different algorithms
» Algorithm parallelism can make conditions private to each one\

No work started yet: opportunity for SuperB leveraging
Babar code and data 40

Algorithm Parallelization

— Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software

» Prototypes using posix-thread, OpenMP and parallel gcclib

» On going effort in collaboration with OpenLab and Root teams to
provide basic thread-safe/multi-thread library components
* Random number generators
* Parallel minimization/fitting algorithms

* Parallel/Vector linear algebra

— Positive and interesting experience with MINUIT

» Parallelization of parameter-fitting opens the opportunity to enlarge the
region of multidimensional space used in physics analysis to essentially
the whole data sample.

41

Parallel MINUIT

A. L. and Lorenzo Moneta

— Minimization of Maximum Likelihood or y? requires iterative computation of
the gradient of the NLL function

IN % 3 N N A N o j species (signals, backgrounds)
0‘\15 ~ NLL(6 +d) . NLL(6y —d) NLL = In Z n; | — Z hlz n; P n, number of events for specie j
00 fo 2d =1 im1 = : P, probability density functions (PDFs)

N number total of events to fit

— Execution time scales with number 6 free parameters and the number N of input
events in the fit

— Two strategies for the parallelization of the gradient and NLL calculation:

|. Gradient or NLL calculation on

Same work for Each process does Same work for
. each process: the calculation of a each process:
the same multi-cores node (OpenMP) Initialization of the specific sub-sample Conclusion of the
|. Distribute Gradient on different minimization step ofderivates minimization step
. — B o & e m e
nodes (MPIl) and parallelize NLL N e I | B | ——
, . | : | | | i
calculation on each multi-cores s H e [B s b F
node (pthreads): hybrid solution stat Split of Scatter-Gather of Start
Iteration parameters derivate values: new iteration

each process has
all values

42

Minuit Parallelization — Example

— Waiting time for fit to converge down from several days to a night (Babar
examples)

» iteration on results back to a human timeframe!

| 29 parameters

g 200 rrrrrrTrre I R
T 18 —4— MPV/(pthreads*4) —30 2
8 F MPV(pthreads*2 i @
515_— —-—MPI(p eee2) 60 COFGS_:zS g
C /] o
14 _— 1 &
12 // —20 §
C o ©
0E | e 30 cores |, E
8 / -
6F —10
At / __....--—-—I--'g"""‘]
- . _l,;"é cores—s
o2F i —1 :]
- (‘ 1_0

OQ

2 4llI6III8III10III12III14|11
Nodes

—
(=2}

Parallelism implementation

— High grain parallelism need to be implemented using multi-thread

— Low level multi-threading is well established at OS and posix
level (now also in C++0x std)

— At user level many implementation technologies exist
» Intel alone today proposes 4/5 different technologies!

» Watch out for compatibility with GGPU approaches
— A serious investigation of the technology trends and of what best

fit our use cases is required before starting to fill up the code
with pragmas and not standard keywords

44

Outlook

— Recent progress shows that we shall be able to exploit next
generation multicore with “small” changes to HEP code

» Exploit copy-on-write (COW) in multi-processing (MP)

» Develop an affordable solution for the sharing of the output file

» Leverage Geant4 experience to explore multi-thread (MT) solutions
— Continue optimization of memory hierarchy usage

» Study data and code “locality” including “core-affinity”

— Expand Minuit experience to other areas of “final” data analysis,
such as machine learning techniques

» Investigating the possibility to use GPUs and custom FPGAs solutions

— “Learn” how to run MT/MP jobs on the grid
» workshop at CERN, June 2009:
http://indico.cern.ch/conferenceDisplay.py?confld=56353

» Tests ongoing with CERN/IT (just got two machines with a dedicated
queue)

45

GPUs!?

»

»

»

»

»

»

ALU ALU
Control

CPU
— A lot of interest is growing around GPUs

Particular interesting is the case of NVIDIA cards using CUDA for
programming

&

Impressive performance (even |100x faster than a normal CPU), but high
energy consumption (up to 200 Watts)

A lot of project ongoing in HPC community. More and more example in HEP
(wait for tomorrow talk...)

Great performance using single floating point precision (IEEE 754 standard): up
to | TFLOPS (w.r.t 10 GFLOPS of a standard CPU)

Need to rewrite most of the code to benefit of this massive parallelism
(thread parallelism), especially memory usage: it can be not straightforward...

The situation can improve with OpenCL (Tim Mattson visiting CERN next
Monday) and Intel Larrabee architecture (standard x86)

46

Explore new Frontier of parallel computing

— Hardware and software technologies may come to the
rescue in many areas
» We shall be ready to exploit them
— Scaling to many-core processors (96-core processors

foreseen for next year) will require innovative solutions
» MP and MT beyond event level

» Fine grain parallelism (OpenCL, custom solutions?)
» Parallel /O

— Possible use of GPUs for massive parallelization
— But, Amdahl docet, algorithm concept have to change

to take advantages on parallelism: think parallel, write
parallel!

47

BACKUP

48

Map/Reduce

Established, yet evolving paradigm

» Original (google, Hadhoop) Map/Reduce takes a set of input key/value
pairs, and produces a set of output key/value pairs.

» Many implementations

ANN

ANMAaR fuisvittAan ki +hA

1 lﬁf\lﬁ\

Map Stage

Worker 1
> Ma

/ ==

Input

.

M

/’

> Ma

"V

->:/ Ma

7

Worker N

P

p

AN

p

\.

-
(roe

[partion |

Partitio

Reduce Stage

Worker 1

-

4

/‘

Worker M

~
| Reduce e |1

__ —¢
AT

Reduce

\ /

-

7N
Merge

N N
s"'"_.
o | Merge —P»
- ').._--/,

. /

NS

| Merge

_- Y,

Output

Event Building!

Level-1 Detector Frontend
Trigger
Cal. Muon Global Readout
T | Systems
o .
Event :
Manager e Builder Networks Controls
| —— Filter
- Systems Systems
- Sub-systems . ;
- Acronyms Computing Services

Map: Detector frontend assign event-id to each fragment
DAQ dispatch all fragment with same id to a given filter node
Reduce: filter node assemble the event and process it

