
1	

The challenge of adapting HEP physics
software applications to run ���

on many-core cpus���

SuperB Workshop, March `10���

Vincenzo Innocente	

CERN	
High Performance Computing ���
for High Energy Physics 	

2	

Moore’s law 	

Transistors used to increase raw-power	
 Increase global power	

Hardware continues to follow Moore’s law	

–  More and more transistors available for

computation	

»  More (and more complex) execution units:

hundreds of new instructions	

»  Longer SIMD (Single Instruction Multiple Data)
vectors 	

»  More hardware threading	

»  More and more cores	

3	

While hardware continued to follow Moore’s
law, the perceived exponential grow of the
“effective” computing power faded away in
hitting three “walls”:	

1. The memory wall	

2. The power wall	

3. The instruction level parallelism (micro-
architecture) wall	

4	

– Processor clock rates have
been increasing faster than
memory clock rates	

–  larger and faster “on chip”
cache memories help
alleviate the problem but
does not solve it	

– Latency in memory access
is often the major
performance issue in
modern software
applications	

5	

Core 1 Core n …

Main memory:	

200-300 cycles	

–  Processors consume more and more power the faster they go	

–  Not linear: 	

»  73% increase in power gives just 13% improvement in performance	

»  (downclocking a processor by about 13% gives roughly half the power

consumption)	

–  Many computing center are today limited by the total electrical power
installed and the corresponding cooling/extraction power	

–  Green Computing!	

http://www.processor-comparison.com/power.html	

6	

–  Longer and fatter parallel
instruction pipelines has been a
main architectural trend in `90s	

–  Hardware branch prediction,
hardware speculative execution,
instruction re-ordering (a.k.a.
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable
examples of techniques to boost
Instruction level parallelism (ILP) 	

–  In practice inter-instruction data
dependencies and run-time
branching limit the amount of
achievable ILP	

7	

Core 2 execution ports	

–  Intel’s Core
microarchitecture
can handle:	

»  Four instructions in
parallel:	

»  Every cycle	

»  Data width of 128
bits	

8	

Issue ports in the Core 2 micro-architecture���
(from Intel Manual No. 248966-016)	

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FP
Add

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
 Address

Store
Data

FP
Load

Jump Exec
Unit

DIV
SQRT

Copyright © 2008 Intel Corporation. All rights
reserved.

  The number of transistors on a chip doubles every 24 month
  Processor architectures changed from area limited to power limited

  ILP useful for ~4 parallel instructions
  Instruction pipeline useful if ≤ 30 stages
  Power consumption grows about cubically with frequency
  Processing capability grows faster than memory speed

  Single core performance is growing slower than it used to be

  SMT/HT can mitigate the situation for certain workloads
  CMP/Multi-Core seems to be a reasonable “compromise”
  Opportunity for performance to increase faster than Moore’s Law

– A turning point was reached and a new technology
emerged: multicore	

»  Keep low frequency and consumption	

»  Transistors used for multiple cores on a single chip: 2, 4, 6, 8
cores on a single chip	

– Multiple hardware-threads on a single core	

»  simultaneous Multi-Threading (Intel Core i7 2 threads per core

(4 cores), Sun UltraSPARC T2 8 threads per core (8 cores))	

– Dedicated architectures:	

»  GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel

Larrabee)	

»  CELL	

»  FPGA (Reconfigurable computing)	

10	

Copyright © 2008 Intel Corporation. All rights
reserved.

Energy Efficient Petascale with Multi-threaded Cores

QUAD-CORE

All products, dates, and figures are preliminary and are subject to change without any notice.

Copyright © 2008 Intel Corporation. All rights
reserved.

Intel
Architecture

Core �

New Materials and Designs

Core Enhancements

Platform Enhancements

 Multi to Many-Core

Copyright © 2008 Intel Corporation. All rights
reserved.

Intel
Architecture

Core �

Tri-Gate, Nanotubes

MMX SSE AVX

PCIe, IMC, QPI, SOC

Dual Quad Octo

Copyright © 2008 Intel Corporation. All rights
reserved.

Future Vision, does not represent real Intel product

Package Technology to Address the Memory Bandwidth Challenge for Tera-scale Computing, Intel Technology Journal, Volume 11, Issue 3, 2007

Copyright © 2008 Intel Corporation. All rights
reserved.

2010 2007 2008 2009

NEW
Microarchitecture

45nm

NEW
Microarchitecture

32nm

2006

NEW
Microarchitecture

65nm

Forecast

Future options subject to change without notice.

e.g. Intel® AVX e.g. Intel® QuickPath Architecture	

Copyright © 2008 Intel Corporation. All rights
reserved.

  Highly parallel, IA programmable
architecture in development

  Ease of scaling for software
ecosystem

  Array of enhanced IA cores
  New Cache Architecture
  New Vector Processing Unit
  Scalable to TFLOPS performance

Cache

Special
Function

& I/O

… IA++

…

…
… … …

… IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

Future options subject to change without notice.

17	

Exploit all 7 “parallel” dimensions of modern computing architecture
for HPC	

– Inside a core (climb the ILP wall)	

1.  Superscalar: Fill the ports (maximize instruction per cycle)	

2.  Pipelined: Fill the stages (avoid stalls)	

3.  SIMD (vector): Fill the register width (exploit SSE, AVX)	

– Inside a Box (climb the memory wall)	

4.  HW threads: Fill up a core (share core & caches)	

5.  Processor cores: Fill up a processor (share of low level resources)	

6.  Sockets: Fill up a box (share high level resources)	

– LAN & WAN (climb the network wall)	

7.  Optimize scheduling and resource sharing on the Grid	

HEP has been traditionally good (only) in the latter	

18	

–  HEP code does not exploit the power of current processors	

»  One instruction per cycle at best	

»  Little or no use of vector units (SIMD)	

»  Poor code locality 	

»  Abuse of the heap	

–  Running N jobs on N=8 cores still efficient but:	

»  Memory (and to less extent cpu cycles) wasted in non sharing	

•  “static” condition and geometry data	

•  I/O buffers	

•  Network and disk resources	

»  Caches (memory on CPU chip) wasted and trashed	

•  L1 cache local per core, L2 and L3 shared	

•  Not locality of code and data (thread/core affinity)	

–  This situation is already bad today, will become only worse in
future many-cores architectures	

HEP software on multicore: ���
an R&D project (WP8 in CERN/PH)	

The aim of the WP8 R&D project is to investigate novel software

solutions to efficiently exploit the new multi-core architecture of
modern computers in our HEP environment	

Motivation: 	

	
industry trend in workstation and “medium range” computing	

Activity divided in four “tracks”	

»  Technology Tracking & Tools	

»  System and core-lib optimization	

»  Framework Parallelization	

»  Algorithm Parallelization	

Coordination of activities already on-going in exps, IT, labs 	

19	

Summary of activity in 2008/2009	

–  Collaboration established with experiments, OpenLab, Geant4 and

ROOT	

»  Close interaction with experiments (bi-weekly meetings, reports in AF)	

»  Workshops each “six” months (April, October 2008, june 2009, next june

2010)	

–  Survey of HW and SW technologies	

»  Target multi-core (8-16/box) in the short term, many-core (96+/box) in

near future	

»  Optimize use of CPU/Memory architecture	

»  Exploit modern OS and compiler features (copy-on-write, MPI, OpenMP)	

–  Prototype solutions	

»  In the experiments and common projects (ROOT, Geant4)	

•  Improved Root-Math, ProofLite, MT-G4, flork&COW in ATLAS and CMS	

»  In the R&D project itself	

•  Parallel GAUDI, perfmon instrumentation of Gaudi and CMSSW	

20	

21	

22	

Floating Point Math on new CPUs	

–  Moore’s law and “progress” in compiler technology have made HEP to

focus mostly in (excessive?) accuracy	

»  Why spending effort in careful optimizations if in the meanwhile computers

gets much faster, hardware changes, compiler gets less stupid?	

»  The time of free lunches is over! 	

–  We need to re-establish excellence in numerical
computation competence in our field!	

»  We shall master approximations, vectorization, numerical methods beyond
simple FORmula TRANslation 	

–  Each new computing architecture changes the balance between accuracy
and speed in particular for FP	

»  The code emitted even for a trivial “1/sqrt(x)” depends on machine, OS,
compiler, compiler-option, even on the way we write it!	

–  One size does not fit all: need of accuracy and speed depends on the
context	

»  Cannot use global switches, replacement libraries, etc 	

»  We shall be able to select the required accuracy for each single use-case	

23	

Optimization of sequential FP algos	

24	

 // Energy loss and variance according to Bethe and Heitler, see also
 // Comp. Phys. Comm. 79 (1994) 157.
 //
 double p = localP.mag();
 double normalisedPath = fabs(p/localP.z())*materialConstants.radLen();
 double z = exp(-normalisedPath);
 double varz = (exp(-normalisedPath*log(3.)/log(2.))-
 exp(-2*normalisedPath));

 if (propDir==oppositeToMomentum) {
 // for backward propagation: delta(1/p) is linear in z=p_outside/p_inside
 theDeltaP += -p*(1/z-1);
 theDeltaCov(0,0) += varz/p/p;
 }else {
 // for forward propagation: calculate in p (linear in 1/z=p_inside/p_outside)
 theDeltaP += p*(z-1);
 double f = 1./p/z;
 theDeltaCov(0,0) += f*f*varz;
 }

This code will not become
faster in future (gcc 4.5 will help
a bit with compiler-time
transcendentals)	

IF speed is a concern	

 accuracy needs to be tuned	

 vectorization/parallelization
have to be accounted for 	

3

•  SIMD computational width
128 bits (current) → 2 doubles or 4 floats
256 bits (2010 - Sandy Bridge) → 4 doubles or 8 floats
512 bits (2011 - Larrabee) → 8 doubles or 16 floats
1024 bits (coming soon) → 16 doubles or 32 floats

•  It makes sense to start now to take it into consideration
developing pilot projects in production environment

•  Possible ways of doing it:
- Assembly
- Instrinsics
- Autovectorization
- SIMD-aware programming languages

•  Challenges using intrinsics:
- Reorganize your data to scale to increasing vector width
- Rethink your algorithm (do not readapt it!)

4

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

v1

v2

v3

v4

r1

r2

r3

r4

• =

r1 = v1*m11+v2*m12+v3*m13+v4*m14

r2 = v1*m21+v2*m22+v3*m23+v4*m24

r3 = v1*m31+v2*m32+v3*m33+v4*m34

r4 = v1*m41+v2*m42+v3*m43+v4*m44

t1 = [m11, m21, m31, m41] * v1

t2 = [m12, m22, m32, m42] * v2

t3 = [m13, m23, m33, m43] * v3

t4 = [m14, m24, m34, m44] * v4

R = t1 + t2 + t3 + t4

__m128 t0 = _mm_set1_ps(v0());
__m128 t1 = _mm_set1_ps(v1());
__m128 t2 = _mm_set1_ps(v2());
__m128 t3 = _mm_set1_ps(v3());

t0 = _mm_mul_ps(m0, t0);
t1 = _mm_mul_ps(m1, t1);
t2 = _mm_mul_ps(m2, t2);
t3 = _mm_mul_ps(m3, t3);

__m128 rs = _mm_add_ps(t0,
 _mm_add_ps(t1,
 _mm_add_ps(t2, t3)));

PARALLEL ARCHITECTURES
FOR HEP EVENT PROCESSING	

27	

HEP Application	

28	

29	

–  Complex and dispersed “legacy” software	

»  Difficult to manage/share/tune resources (memory, I/O): better to rely in

the support from OS and compiler	

»  Coding and maintaining thread-safe software at user-level is hard	

»  Need automatic tools to identify code to be made thread-aware	

•  Geant4: 10K lines modified! (thread-parallel Geant4) 	

•  Not enough, many hidden (optimization) details	

–  “Simple” multi-process seems more promising	

»  ATLAS: fork() (exploit copy-on-write), shmem (needs library support)	

»  LHCb: python	

»  PROOF-lite	

–  Other limitations are at the door (I/O, communication, memory)	

»  Proof: client-server communication overhead in a single box	

»  Proof-lite: I/O bound >2 processes per disk	

»  Online (Atlas, CMS) limit in in/out-bound connections to one box 	

Opportunity: Reconstruction Memory-Footprint shows large condition data	

How to share common data between different process?	

  multi-process vs multi-threaded	

  Read-only: Copy-on-write, Shared Libraries	

  Read-write: Shared Memory, sockets, files	

30	

CMS:	

1GB total Memory
Footprint	

Event Size 1 MB	

Sharable data 250MB	

Shared code 130MB	

Private Data 400MB !!	

–  Modern OS share read-only pages among processes dynamically	

»  A memory page is copied and made private to a process only when

modified	

–  Prototype in Atlas and LHCb	

»  Encouraging results as memory sharing is concerned (50% shared)	

»  Concerns about I/O (need to merge output from multiple processes)	

31	

Memory (ATLAS)	

One process: 700MB VMem and 420MB RSS	

COW:	

(before) evt 0: private: 004 MB | shared: 310 MB	

(before) evt 1: private: 235 MB | shared: 265 MB	

. . .	

(before) evt50: private: 250 MB | shared: 263 MB	

See Sebastien Binet’s talk @ CHEP09	

–  KSM is a linux driver that allows dynamically sharing identical memory pages
between one or more processes.	

»  It has been developed as a backend of KVM to help memory sharing between virtual
machines running on the same host.	

»  KSM scans just memory that was registered with it. Essentially this means that each
memory allocation, sensible to be shared, need to be followed by a call to a registry
function.	

–  Test performed “retrofitting” TCMalloc with KSM	

»  Just one single line of code added!	

–  CMS reconstruction of real data (Cosmics with full detector)	

»  No code change	

»  400MB private data; 250MB shared data; 130MB shared code	

–  ATLAS	

»  No code change 	

»  In a Reconstruction job of 1.6GB VM, up to 1GB can be shared with KSM 	

32	

ATLAS results by Yushu Yao ���
Comparing FREE Memory (light blue) when running 2 jobs ���
 KSM frees 500MB System Memory	

~1GB	 Free	 Memory	
~500MB	 Free	 Memory	

33	

34	

35	

Parallelization of Gaudi Framework	

36	

GaudiPython Parallel: Specifics	

–  TES transferred by Serialise/Deserialise	

–  Auto-optimisation of data transfer	
 37	

GaudiPython Parallel	

–  Reconstruction (Brunel)	

»  FEST-2009-Data.py : 1000 Events	

•  From $BRUNELOPTS	

3/5/10	

38	

eoin.sm
ith@

cern.ch
PH

-SFT
 : R

&
D

 M
ulticore	

Run
Type	

CPU%	
 T_elapsed	
 T_init	
 T_run	
 Speedup	

Serial	
 1334	
 47	
 1287	
 1	

parallel=5	
 317	
 47	
 280	
 4.6	

  ~1.5s/event	

  Parallel Overhead 3%	

  Speedup Near-Linear	

Gaudi : HEP Event Processing	

39	

• Transient Event
Store : Part of
Framework	

• Stores DataObjects
during processing	

• Loaded from
Persistent Storage at
Start	

• Constantly modified
during run	

HEP data processing: ���
beyond event-by-event processing	

–  No need of a coherent event state:	

»  The “Event” occupies a small part of the resident memory	

•  Small overhead to keep several event in memory at once	

»  Algorithms 	

•  read specific event-fragments, store new fragments: never modify

existing ones	

•  Dependencies are known: algorithms can be scheduled in parallel	

•  We can distribute algorithms among cores, improving data and code locality

in caches	

»  Storage:	

•  “Event-Fragments” map root branches: independent of each other	

•  Can be streamed as soon as created, no need to wait for the full event to be

ready	

–  Conditions shared among events and (some) algorithms	

»  Event parallelism will profit of coherent shared conditions	

»  Few conditions are used by different algorithms 	

»  Algorithm parallelism can make conditions private to each one\	

No work started yet: opportunity for SuperB leveraging
Babar code and data	
 40	

41	

–  Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software	

»  Prototypes using posix-thread, OpenMP and parallel gcclib
»  On going effort in collaboration with OpenLab and Root teams to

provide basic thread-safe/multi-thread library components
•  Random number generators	

•  Parallel minimization/fitting algorithms	

•  Parallel/Vector linear algebra	

–  Positive and interesting experience with MINUIT	

»  Parallelization of parameter-fitting opens the opportunity to enlarge the

region of multidimensional space used in physics analysis to essentially
the whole data sample. 	

42	

–  Minimization of Maximum Likelihood or χ2 requires iterative computation of
the gradient of the NLL function	

–  Execution time scales with number θ free parameters and the number N of input
events in the fit	

–  Two strategies for the parallelization of the gradient and NLL calculation:	

1.  Gradient or NLL calculation on 	

	
the same multi-cores node (OpenMP)	

1.  Distribute Gradient on different 	

	
nodes (MPI) and parallelize NLL 	

	
calculation on each multi-cores 	

	
node (pthreads): hybrid solution	

A. L. and Lorenzo Moneta	

–  Waiting time for fit to converge down from several days to a night (Babar
examples) 	

»  iteration on results back to a human timeframe!	

43	

60 cores	

30 cores	

15 cores	

Parallelism implementation 	

–  High grain parallelism need to be implemented using multi-thread	

–  Low level multi-threading is well established at OS and posix
level (now also in C++0x std)	

–  At user level many implementation technologies exist	

»  Intel alone today proposes 4/5 different technologies!	

»  Watch out for compatibility with GGPU approaches	

–  A serious investigation of the technology trends and of what best
fit our use cases is required before starting to fill up the code
with pragmas and not standard keywords	

44	

–  Recent progress shows that we shall be able to exploit next
generation multicore with “small” changes to HEP code	

»  Exploit copy-on-write (COW) in multi-processing (MP)	

»  Develop an affordable solution for the sharing of the output file	

»  Leverage Geant4 experience to explore multi-thread (MT) solutions	

–  Continue optimization of memory hierarchy usage	

»  Study data and code “locality” including “core-affinity”	

–  Expand Minuit experience to other areas of “final” data analysis,
such as machine learning techniques	

»  Investigating the possibility to use GPUs and custom FPGAs solutions	

–  “Learn” how to run MT/MP jobs on the grid	

»  workshop at CERN, June 2009:

http://indico.cern.ch/conferenceDisplay.py?confId=56353	

»  Tests ongoing with CERN/IT (just got two machines with a dedicated

queue)	

45	

–  A lot of interest is growing around GPUs	

»  Particular interesting is the case of NVIDIA cards using CUDA for

programming	

»  Impressive performance (even 100x faster than a normal CPU), but high

energy consumption (up to 200 Watts)	

»  A lot of project ongoing in HPC community. More and more example in HEP

(wait for tomorrow talk…)	

»  Great performance using single floating point precision (IEEE 754 standard): up

to 1 TFLOPS (w.r.t 10 GFLOPS of a standard CPU)	

»  Need to rewrite most of the code to benefit of this massive parallelism

(thread parallelism), especially memory usage: it can be not straightforward…	

»  The situation can improve with OpenCL (Tim Mattson visiting CERN next

Monday) and Intel Larrabee architecture (standard x86)	

46	

– Hardware and software technologies may come to the
rescue in many areas	

»  We shall be ready to exploit them	

– Scaling to many-core processors (96-core processors
foreseen for next year) will require innovative solutions	

»  MP and MT beyond event level	

»  Fine grain parallelism (OpenCL, custom solutions?)	

»  Parallel I/O	

– Possible use of GPUs for massive parallelization	

– But, Amdahl docet, algorithm concept have to change
to take advantages on parallelism: think parallel, write
parallel!	

47	

BACKUP	

48	

Map/Reduce	

Established, yet evolving paradigm	

»  Original (google, Hadhoop) Map/Reduce takes a set of input key/value
pairs, and produces a set of output key/value pairs.	

»  Many implementations 	

»  Map (written by the user) 	

•  takes an input pair and produces a set of intermediate key/value pairs. 	

»  The MapReduce library 	

•  groups together all intermediate values associated with the same

intermediate key I and passes them to the Reduce function.	

»  Reduce , also written by the user, 	

•  accepts an intermediate key I and a set of values for that key. It merges

together these values to form a possibly smaller set of values. 	

49	

Event Building!	

50	

Map: Detector frontend assign event-id to each fragment	

DAQ dispatch all fragment with same id to a given filter node	

Reduce: filter node assemble the event and process it	

