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Moore’s law 	


Transistors used to increase raw-power	
 Increase global power	




Hardware continues to follow Moore’s law	

–  More and more transistors available for 

computation	

»  More (and more complex) execution units: 

hundreds of new instructions	


»  Longer SIMD (Single Instruction Multiple Data) 
vectors 	


»  More hardware threading	

»  More and more cores	
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While hardware continued to follow Moore’s 
law, the perceived exponential grow of the 
“effective” computing power faded away in 
hitting three “walls”:	


1. The memory wall	

2. The power wall	

3. The instruction level parallelism (micro-
architecture) wall	
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– Processor clock rates have 
been increasing faster than 
memory clock rates	


–  larger and faster “on chip” 
cache memories help 
alleviate the problem but 
does not solve it	


– Latency in memory access 
is often the major 
performance issue in 
modern software 
applications	
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Core 1 Core n  … 

Main memory:	

200-300 cycles	




–  Processors consume more and more power the faster they go	

–  Not linear: 	


»  73% increase in power gives just 13% improvement in performance	

»  (downclocking a processor by about 13% gives roughly half the power 

consumption)	


–  Many computing center are today limited by the total electrical power 
installed and the corresponding cooling/extraction power	


–  Green Computing!	


http://www.processor-comparison.com/power.html	
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–  Longer and fatter parallel 
instruction pipelines has been a 
main architectural trend in `90s	


–  Hardware branch prediction, 
hardware speculative execution, 
instruction re-ordering (a.k.a. 
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable 
examples of techniques to boost 
Instruction level parallelism (ILP) 	


–  In practice inter-instruction data 
dependencies and run-time 
branching limit the amount of 
achievable ILP	
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Core 2 execution ports	


–  Intel’s Core 
microarchitecture 
can handle:	


»  Four instructions in 
parallel:	


»  Every cycle	


»  Data width of 128 
bits	
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Issue ports in the Core 2 micro-architecture���
(from Intel Manual No. 248966-016)	


Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

Integer 
Alu 

Int. SIMD 
Alu 

x87 FP 
Multiply 

SSE FP 
Multiply 

FSS Move 
& Logic 

QW Shuffle 

Integer 
Alu 

Int. SIMD 
Multiply 

FP 
Add 

FSS Move 
& Logic 

QW Shuffle 

Integer 
Alu 

Int. SIMD 
Alu 

FSS Move 
& Logic 

QW Shuffle 

Alu = Arithmetic, Logical Unit 
FSS = FP/SIMD/SSE2 
QW = Quadword (64-bits) 

Integer 
Load 

Store 
 Address 

Store 
Data 

FP 
Load 

Jump Exec 
Unit 

DIV 
SQRT 



Copyright © 2008 Intel Corporation. All rights 
reserved. 

   The number of transistors on a chip doubles every 24 month 
   Processor architectures changed from area limited to power limited 

   ILP useful for ~4 parallel instructions 
   Instruction pipeline useful if ≤ 30 stages 
   Power consumption grows about cubically with frequency 
   Processing capability grows faster than memory speed 

   Single core performance is growing slower than it used to be 

   SMT/HT can mitigate the situation for certain workloads 
   CMP/Multi-Core seems to be a reasonable “compromise” 
   Opportunity for performance to increase faster than Moore’s Law 



– A turning point was reached and a new technology 
emerged: multicore	


»  Keep low frequency and consumption	


»  Transistors used for multiple cores on a single chip: 2, 4, 6, 8 
cores on a single chip	


– Multiple hardware-threads on a single core	

»  simultaneous Multi-Threading (Intel Core i7 2 threads per core 

(4 cores), Sun UltraSPARC T2 8 threads per core (8 cores))	


– Dedicated architectures:	

»  GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel 

Larrabee)	

»  CELL	


»  FPGA (Reconfigurable computing)	
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Copyright © 2008 Intel Corporation. All rights 
reserved. 

Energy Efficient Petascale with Multi-threaded Cores 

QUAD-CORE 

All products, dates, and figures are preliminary and are subject to change without any notice.  



Copyright © 2008 Intel Corporation. All rights 
reserved. 

Intel 
Architecture 

Core �

New Materials and Designs 

Core Enhancements 

Platform Enhancements 

   Multi to Many-Core 



Copyright © 2008 Intel Corporation. All rights 
reserved. 

Intel 
Architecture 

Core �

Tri-Gate, Nanotubes  

MMX  SSE  AVX  

PCIe, IMC, QPI, SOC  

Dual  Quad  Octo  



Copyright © 2008 Intel Corporation. All rights 
reserved. 

Future Vision, does not represent real Intel product 

Package Technology to Address the Memory Bandwidth Challenge for Tera-scale Computing, Intel Technology Journal, Volume 11, Issue 3, 2007 



Copyright © 2008 Intel Corporation. All rights 
reserved. 

2010 2007 2008 2009 

NEW 
Microarchitecture 

45nm 

NEW 
Microarchitecture 

32nm 

2006 

NEW 
Microarchitecture 

65nm 

Forecast 

Future options subject to change without notice. 

e.g. Intel® AVX e.g. Intel® QuickPath Architecture	




Copyright © 2008 Intel Corporation. All rights 
reserved. 

  Highly parallel, IA programmable 
architecture in development 

  Ease of scaling for software 
ecosystem 

  Array of enhanced IA cores 
  New Cache Architecture 
  New Vector Processing Unit 
  Scalable to TFLOPS performance 

Cache 

Special 
Function 

& I/O 

… IA++ 

… 

… 
… … … 

… IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

Future options subject to change without notice. 
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Exploit all 7 “parallel” dimensions of modern computing architecture 
for HPC	


– Inside a core (climb the ILP wall)	

1.  Superscalar: Fill the ports (maximize instruction per cycle)	


2.  Pipelined: Fill the stages (avoid stalls)	


3.  SIMD (vector): Fill the register width  (exploit SSE, AVX)	


– Inside a Box (climb the memory wall)	

4.  HW threads: Fill up a core (share core & caches)	


5.  Processor cores: Fill up a processor (share of low level resources)	


6.  Sockets: Fill up a box (share high level resources)	


– LAN & WAN (climb the network wall)	

7.  Optimize scheduling and resource sharing on the Grid	


HEP has been traditionally good (only) in the latter	
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–  HEP code does not exploit the power of current processors	

»  One instruction per cycle at best	


»  Little or no use of vector units (SIMD)	

»  Poor code locality 	


»  Abuse of the heap	


–  Running N jobs on N=8 cores still efficient but:	

»  Memory (and to less extent cpu cycles) wasted in non sharing	


•  “static” condition and geometry data	

•  I/O buffers	

•  Network and disk resources	


»  Caches (memory on CPU chip) wasted and trashed	

•  L1 cache local per core, L2 and L3 shared	

•  Not locality of code and data (thread/core affinity)	


–  This situation is already bad today, will become only worse in 
future many-cores architectures	




HEP software on multicore: ���
an R&D project (WP8 in CERN/PH)	

The aim of  the WP8 R&D project  is to investigate novel software 

solutions to efficiently exploit the new multi-core architecture of 
modern computers in our HEP environment	


Motivation: 	


	
industry trend in workstation and “medium range” computing	


Activity divided in four “tracks”	

»  Technology Tracking & Tools	


»  System and core-lib optimization	


»  Framework Parallelization	

»  Algorithm Parallelization	


Coordination of activities already on-going in exps, IT, labs 	
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Summary of activity in 2008/2009	

–  Collaboration established with experiments, OpenLab, Geant4 and 

ROOT	

»  Close interaction with experiments (bi-weekly meetings, reports in AF)	

»  Workshops each “six” months (April, October 2008, june 2009, next june 

2010)	


–  Survey of HW and SW technologies	

»  Target multi-core (8-16/box) in the short term, many-core (96+/box) in 

near future	

»  Optimize use of CPU/Memory architecture	

»  Exploit modern OS and compiler features (copy-on-write, MPI, OpenMP)	


–  Prototype solutions	

»  In the experiments and common projects (ROOT, Geant4)	


•  Improved Root-Math, ProofLite, MT-G4, flork&COW in ATLAS and CMS	


»  In the R&D project itself	

•  Parallel GAUDI, perfmon instrumentation of Gaudi and CMSSW	
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Floating Point Math on new CPUs	

–  Moore’s law and “progress” in compiler technology have made HEP to 

focus mostly in (excessive?) accuracy	

»  Why spending effort in careful optimizations if in the meanwhile computers 

gets much faster, hardware changes, compiler gets less stupid?	

»  The time of free lunches is over! 	


–  We need to re-establish excellence in numerical 
computation competence in our field!	


»  We shall master approximations, vectorization, numerical methods beyond 
simple FORmula TRANslation 	


–  Each new computing architecture changes the balance between accuracy 
and speed in particular for FP	


»  The code emitted even for a trivial “1/sqrt(x)” depends on machine, OS, 
compiler, compiler-option, even on the way we write it!	


–  One size does not fit all: need of accuracy and speed depends on the 
context	


»  Cannot use global switches, replacement libraries, etc 	

»  We shall be able to select the required accuracy for each single use-case	
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Optimization of sequential FP algos	
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 // Energy loss and variance according to Bethe and Heitler, see also 
  // Comp. Phys. Comm. 79 (1994) 157.  
  // 
  double p = localP.mag(); 
  double normalisedPath = fabs(p/localP.z())*materialConstants.radLen(); 
  double z = exp(-normalisedPath); 
  double varz = (exp(-normalisedPath*log(3.)/log(2.))- 
     exp(-2*normalisedPath)); 

  if ( propDir==oppositeToMomentum ) { 
    // for backward propagation: delta(1/p) is linear in z=p_outside/p_inside 
      theDeltaP += -p*(1/z-1); 
    theDeltaCov(0,0) += varz/p/p; 
  }else {   
     // for forward propagation: calculate in p (linear in 1/z=p_inside/p_outside) 
      theDeltaP += p*(z-1); 
    double f = 1./p/z; 
    theDeltaCov(0,0) += f*f*varz; 
  } 

This code will not become 
faster in future (gcc 4.5 will help 
a bit with compiler-time 
transcendentals)	


IF speed is a concern	

  accuracy needs to be tuned	

  vectorization/parallelization 
have to be accounted for  	
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•  SIMD computational width 
128 bits (current) → 2 doubles or 4 floats 
256 bits (2010 - Sandy Bridge) → 4 doubles or 8 floats 
512 bits (2011 - Larrabee) → 8 doubles or 16 floats 
1024 bits (coming soon) → 16 doubles or 32 floats 

•  It makes sense to start now to take it into consideration 
developing pilot projects in production environment 

•  Possible ways of  doing it: 
- Assembly 
- Instrinsics 
- Autovectorization 
- SIMD-aware programming languages 

•  Challenges using intrinsics: 
- Reorganize your data to scale to increasing vector width 
- Rethink your algorithm (do not readapt it!) 
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m11    m12    m13    m14 

m21    m22    m23    m24 

m31    m32    m33    m34 

m41    m42    m43    m44 

v1 

v2 

v3 

v4 

r1 

r2 

r3 

r4 

• = 

r1 = v1*m11+v2*m12+v3*m13+v4*m14 

r2 = v1*m21+v2*m22+v3*m23+v4*m24 

r3 = v1*m31+v2*m32+v3*m33+v4*m34 

r4 = v1*m41+v2*m42+v3*m43+v4*m44 

t1 = [m11, m21, m31, m41] * v1 

t2 = [m12, m22, m32, m42] * v2 

t3 = [m13, m23, m33, m43] * v3 

t4 = [m14, m24, m34, m44] * v4 

R = t1 + t2 + t3 + t4 

__m128 t0 = _mm_set1_ps(v0()); 
__m128 t1 = _mm_set1_ps(v1()); 
__m128 t2 = _mm_set1_ps(v2()); 
__m128 t3 = _mm_set1_ps(v3()); 

t0 = _mm_mul_ps(m0, t0); 
t1 = _mm_mul_ps(m1, t1); 
t2 = _mm_mul_ps(m2, t2); 
t3 = _mm_mul_ps(m3, t3); 

__m128 rs = _mm_add_ps(t0, 
            _mm_add_ps(t1, 
            _mm_add_ps(t2, t3))); 



PARALLEL ARCHITECTURES 
FOR HEP EVENT PROCESSING	
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HEP Application	
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–  Complex and dispersed “legacy” software	

»  Difficult to manage/share/tune resources (memory, I/O): better to rely in 

the support from OS and compiler	

»  Coding and maintaining thread-safe software at user-level is hard	

»  Need automatic tools to identify code to be made thread-aware	


•  Geant4: 10K lines modified! (thread-parallel Geant4) 	

•  Not enough, many hidden (optimization) details	


–  “Simple” multi-process seems more promising	

»  ATLAS: fork() (exploit copy-on-write), shmem (needs library support)	

»  LHCb: python	

»  PROOF-lite	


–  Other limitations are at the door (I/O, communication, memory)	

»  Proof: client-server communication overhead in a single box	

»  Proof-lite: I/O bound >2 processes per disk	

»  Online (Atlas, CMS) limit in in/out-bound connections to one box 	




Opportunity: Reconstruction Memory-Footprint shows large condition data	


How to share common data between different process?	


  multi-process vs multi-threaded	


  Read-only: Copy-on-write, Shared Libraries	


  Read-write: Shared Memory, sockets, files	
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CMS:	

1GB total Memory 
Footprint	

Event Size 1 MB	

Sharable data 250MB	

Shared code  130MB	

Private Data  400MB !!	




–  Modern OS share read-only pages among processes dynamically	

»  A memory page is copied and made private to a process only when 

modified	


–  Prototype in Atlas and LHCb	

»  Encouraging results as memory sharing is concerned (50% shared)	


»  Concerns about I/O (need to merge output from multiple processes)	
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Memory (ATLAS)	

One process:  700MB VMem and  420MB RSS	

COW:	

(before) evt 0: private: 004 MB | shared: 310 MB	

(before) evt 1: private: 235 MB | shared: 265 MB	

. . .	

(before) evt50: private: 250 MB | shared: 263 MB	


See Sebastien Binet’s talk @ CHEP09	




–  KSM is a linux driver that allows dynamically sharing identical memory pages 
between one or more processes.	


»  It has been developed as a backend of KVM to help memory sharing between virtual 
machines running on the same host.	


»  KSM scans just memory that was registered with it. Essentially this means that each 
memory allocation, sensible to be shared, need to be followed by a call to a registry 
function.	


–  Test performed “retrofitting” TCMalloc with KSM	

»  Just one single line of code added!	


–  CMS reconstruction of real data (Cosmics with full detector)	

»  No code change	

»  400MB private data; 250MB shared data; 130MB shared code	


–  ATLAS	

»  No code change 	


»  In a Reconstruction job of 1.6GB VM, up to 1GB can be shared with KSM 	
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ATLAS results by Yushu Yao ���
Comparing FREE Memory (light blue) when running 2 jobs ���
 KSM frees 500MB System Memory	


~1GB	  Free	  Memory	  
~500MB	  Free	  Memory	  
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Parallelization of Gaudi Framework	
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GaudiPython Parallel: Specifics	


–  TES transferred by Serialise/Deserialise	


–  Auto-optimisation of data transfer	
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GaudiPython Parallel	


–  Reconstruction (Brunel)	

»  FEST-2009-Data.py : 1000 Events	


•  From $BRUNELOPTS	


3/5/10	
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eoin.sm
ith@

cern.ch                                     
PH

-SFT
 : R

&
D

 M
ulticore	


Run 
Type	


CPU%	
 T_elapsed	
 T_init	
 T_run	
 Speedup	


Serial	
 1334	
 47	
 1287	
 1	


parallel=5	
 317	
 47	
 280	
 4.6	


  ~1.5s/event	

  Parallel Overhead 3%	

  Speedup Near-Linear	




Gaudi : HEP Event Processing	
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• Transient Event 
Store : Part of 
Framework	

• Stores DataObjects 
during processing	

• Loaded from 
Persistent Storage at 
Start	

• Constantly modified 
during run	




HEP data processing: ���
beyond event-by-event processing	

–  No need of a coherent event state:	


»  The “Event” occupies a small part of the resident memory	

•  Small overhead to keep several event in memory at once	


»  Algorithms 	

•  read specific event-fragments, store new fragments: never modify 

existing ones	

•  Dependencies are known: algorithms can be scheduled in parallel	

•  We can distribute algorithms among cores, improving data and code locality 

in caches	

»  Storage:	


•  “Event-Fragments” map root branches: independent of each other	

•  Can be streamed as soon as created, no need to wait for the full event to be 

ready	


–  Conditions shared among events and (some) algorithms	

»  Event parallelism will profit of coherent shared conditions	

»  Few conditions are used by different algorithms 	

»  Algorithm parallelism can make conditions private to each one\	


No work started yet: opportunity for SuperB leveraging 
Babar code and data	
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–  Ultimate performance gain will come from parallelizing 
algorithms used in current LHC physics application 
software	


»  Prototypes using posix-thread, OpenMP and parallel gcclib 
»  On going effort in collaboration with OpenLab and Root teams to 

provide basic thread-safe/multi-thread library components 
•  Random number generators	

•  Parallel minimization/fitting algorithms	

•  Parallel/Vector linear algebra	


–  Positive and interesting experience with MINUIT	

»  Parallelization of parameter-fitting opens the opportunity to enlarge the 

region of multidimensional space used in physics analysis to essentially 
the whole data sample. 	
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–  Minimization of Maximum Likelihood or χ2 requires iterative computation of 
the gradient of the NLL function	


–  Execution time scales with number θ free parameters and the number N of input 
events in the fit	


–  Two strategies for the parallelization of the gradient and NLL calculation:	


1.  Gradient or NLL calculation on 	


	
the same multi-cores node (OpenMP)	


1.  Distribute Gradient on different 	


	
nodes (MPI) and parallelize NLL 	


	
calculation on each multi-cores 	


	
node (pthreads): hybrid solution	


A. L. and Lorenzo Moneta	




–  Waiting time for fit to converge down from several days to a night (Babar 
examples) 	

»  iteration on results back to a human timeframe!	
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60 cores	


30 cores	


15 cores	




Parallelism implementation 	

–  High grain parallelism need to be implemented using multi-thread	


–  Low level multi-threading is well established at OS and posix 
level (now also in C++0x std)	


–  At user level many implementation technologies exist	

»  Intel alone today proposes 4/5 different technologies!	


»  Watch out for compatibility with GGPU approaches	


–  A serious investigation of the technology trends and of what best 
fit our use cases is required before starting to fill up the code 
with pragmas and not standard keywords	
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–  Recent progress shows that we shall be able to exploit next 
generation multicore with “small” changes to HEP code	

»  Exploit copy-on-write (COW) in multi-processing (MP)	

»  Develop an affordable solution for the sharing of the output file	


»  Leverage Geant4 experience to explore multi-thread (MT) solutions	


–  Continue optimization of memory hierarchy usage	

»  Study data and code “locality” including “core-affinity”	


–  Expand Minuit experience to other areas of “final” data analysis, 
such as machine learning techniques	

»  Investigating the possibility to use GPUs and custom FPGAs solutions	


–  “Learn” how to run MT/MP jobs on the grid	

»  workshop at CERN, June 2009: 

http://indico.cern.ch/conferenceDisplay.py?confId=56353	

»  Tests ongoing with CERN/IT (just got two machines with a dedicated 

queue)	
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–  A lot of interest is growing around GPUs	

»  Particular interesting is the case of NVIDIA cards using CUDA for 

programming	

»  Impressive performance (even 100x faster than a normal CPU), but high 

energy consumption (up to 200 Watts)	

»  A lot of project ongoing in HPC community. More and more example in HEP 

(wait for tomorrow talk…)	

»  Great performance using single floating point precision (IEEE 754 standard): up 

to 1 TFLOPS (w.r.t 10 GFLOPS of a standard CPU)	

»  Need to rewrite most of the code to benefit of this massive parallelism 

(thread parallelism), especially memory usage: it can be not straightforward…	

»  The situation can improve with OpenCL (Tim Mattson visiting CERN next 

Monday) and Intel Larrabee architecture (standard x86)	


46	




– Hardware and software technologies may come to the 
rescue in many areas	


»  We shall be ready to exploit them	


– Scaling to many-core processors (96-core processors 
foreseen for next year) will require innovative solutions	


»  MP and MT beyond event level	


»  Fine grain parallelism (OpenCL, custom solutions?)	


»  Parallel I/O	


– Possible use of GPUs for massive parallelization	


– But, Amdahl docet, algorithm concept have to change 
to take advantages on parallelism: think parallel, write 
parallel!	
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BACKUP	


48	




Map/Reduce	

Established, yet evolving paradigm	


»  Original (google, Hadhoop) Map/Reduce takes a set of input key/value 
pairs, and produces a set of output key/value pairs.	


»  Many implementations 	

»  Map (written by the user) 	


•  takes an input pair and produces a set of intermediate key/value pairs. 	


»  The MapReduce library 	

•  groups together all intermediate values associated with the same 

intermediate key I and passes them to the Reduce function.	


»  Reduce , also written by the user, 	

•  accepts an intermediate key I and a set of values for that key. It merges 

together these values to form a possibly smaller set of values. 	
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Event Building!	
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Map: Detector frontend assign event-id to each fragment	

DAQ dispatch all fragment with same id to a given filter node	

Reduce: filter node assemble the event and process it	



