
1	

The challenge of adapting HEP physics
software applications to run ���

on many-core cpus���

SuperB Workshop, March `10���

Vincenzo Innocente	

CERN	

High Performance Computing ���
for High Energy Physics 	

2	

Moore’s law 	

Transistors used to increase raw-power	

 Increase global power	

Hardware continues to follow Moore’s law	

–  More and more transistors available for

computation	

»  More (and more complex) execution units:

hundreds of new instructions	

»  Longer SIMD (Single Instruction Multiple Data)
vectors 	

»  More hardware threading	

»  More and more cores	

3	

While hardware continued to follow Moore’s
law, the perceived exponential grow of the
“effective” computing power faded away in
hitting three “walls”:	

1. The memory wall	

2. The power wall	

3. The instruction level parallelism (micro-
architecture) wall	

4	

– Processor clock rates have
been increasing faster than
memory clock rates	

–  larger and faster “on chip”
cache memories help
alleviate the problem but
does not solve it	

– Latency in memory access
is often the major
performance issue in
modern software
applications	

5	

Core 1 Core n …

Main memory:	

200-300 cycles	

–  Processors consume more and more power the faster they go	

–  Not linear: 	

»  73% increase in power gives just 13% improvement in performance	

»  (downclocking a processor by about 13% gives roughly half the power

consumption)	

–  Many computing center are today limited by the total electrical power
installed and the corresponding cooling/extraction power	

–  Green Computing!	

http://www.processor-comparison.com/power.html	

6	

–  Longer and fatter parallel
instruction pipelines has been a
main architectural trend in `90s	

–  Hardware branch prediction,
hardware speculative execution,
instruction re-ordering (a.k.a.
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable
examples of techniques to boost
Instruction level parallelism (ILP) 	

–  In practice inter-instruction data
dependencies and run-time
branching limit the amount of
achievable ILP	

7	

Core 2 execution ports	

–  Intel’s Core
microarchitecture
can handle:	

»  Four instructions in
parallel:	

»  Every cycle	

»  Data width of 128
bits	

8	

Issue ports in the Core 2 micro-architecture���
(from Intel Manual No. 248966-016)	

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FP
Add

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
 Address

Store
Data

FP
Load

Jump Exec
Unit

DIV
SQRT

Copyright © 2008 Intel Corporation. All rights
reserved.

  The number of transistors on a chip doubles every 24 month
  Processor architectures changed from area limited to power limited

  ILP useful for ~4 parallel instructions
  Instruction pipeline useful if ≤ 30 stages
  Power consumption grows about cubically with frequency
  Processing capability grows faster than memory speed

  Single core performance is growing slower than it used to be

  SMT/HT can mitigate the situation for certain workloads
  CMP/Multi-Core seems to be a reasonable “compromise”
  Opportunity for performance to increase faster than Moore’s Law

– A turning point was reached and a new technology
emerged: multicore	

»  Keep low frequency and consumption	

»  Transistors used for multiple cores on a single chip: 2, 4, 6, 8
cores on a single chip	

– Multiple hardware-threads on a single core	

»  simultaneous Multi-Threading (Intel Core i7 2 threads per core

(4 cores), Sun UltraSPARC T2 8 threads per core (8 cores))	

– Dedicated architectures:	

»  GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel

Larrabee)	

»  CELL	

»  FPGA (Reconfigurable computing)	

10	

Copyright © 2008 Intel Corporation. All rights
reserved.

Energy Efficient Petascale with Multi-threaded Cores

QUAD-CORE

All products, dates, and figures are preliminary and are subject to change without any notice.

Copyright © 2008 Intel Corporation. All rights
reserved.

Intel
Architecture

Core �

New Materials and Designs

Core Enhancements

Platform Enhancements

 Multi to Many-Core

Copyright © 2008 Intel Corporation. All rights
reserved.

Intel
Architecture

Core �

Tri-Gate, Nanotubes 

MMX  SSE  AVX 

PCIe, IMC, QPI, SOC 

Dual  Quad  Octo 

Copyright © 2008 Intel Corporation. All rights
reserved.

Future Vision, does not represent real Intel product

Package Technology to Address the Memory Bandwidth Challenge for Tera-scale Computing, Intel Technology Journal, Volume 11, Issue 3, 2007

Copyright © 2008 Intel Corporation. All rights
reserved.

2010 2007 2008 2009

NEW
Microarchitecture

45nm

NEW
Microarchitecture

32nm

2006

NEW
Microarchitecture

65nm

Forecast

Future options subject to change without notice.

e.g. Intel® AVX e.g. Intel® QuickPath Architecture	

Copyright © 2008 Intel Corporation. All rights
reserved.

  Highly parallel, IA programmable
architecture in development

  Ease of scaling for software
ecosystem

  Array of enhanced IA cores
  New Cache Architecture
  New Vector Processing Unit
  Scalable to TFLOPS performance

Cache

Special
Function

& I/O

… IA++

…

…
… … …

… IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

Future options subject to change without notice.

17	

Exploit all 7 “parallel” dimensions of modern computing architecture
for HPC	

– Inside a core (climb the ILP wall)	

1.  Superscalar: Fill the ports (maximize instruction per cycle)	

2.  Pipelined: Fill the stages (avoid stalls)	

3.  SIMD (vector): Fill the register width (exploit SSE, AVX)	

– Inside a Box (climb the memory wall)	

4.  HW threads: Fill up a core (share core & caches)	

5.  Processor cores: Fill up a processor (share of low level resources)	

6.  Sockets: Fill up a box (share high level resources)	

– LAN & WAN (climb the network wall)	

7.  Optimize scheduling and resource sharing on the Grid	

HEP has been traditionally good (only) in the latter	

18	

–  HEP code does not exploit the power of current processors	

»  One instruction per cycle at best	

»  Little or no use of vector units (SIMD)	

»  Poor code locality 	

»  Abuse of the heap	

–  Running N jobs on N=8 cores still efficient but:	

»  Memory (and to less extent cpu cycles) wasted in non sharing	

•  “static” condition and geometry data	

•  I/O buffers	

•  Network and disk resources	

»  Caches (memory on CPU chip) wasted and trashed	

•  L1 cache local per core, L2 and L3 shared	

•  Not locality of code and data (thread/core affinity)	

–  This situation is already bad today, will become only worse in
future many-cores architectures	

HEP software on multicore: ���
an R&D project (WP8 in CERN/PH)	

The aim of the WP8 R&D project is to investigate novel software

solutions to efficiently exploit the new multi-core architecture of
modern computers in our HEP environment	

Motivation: 	

	

industry trend in workstation and “medium range” computing	

Activity divided in four “tracks”	

»  Technology Tracking & Tools	

»  System and core-lib optimization	

»  Framework Parallelization	

»  Algorithm Parallelization	

Coordination of activities already on-going in exps, IT, labs 	

19	

Summary of activity in 2008/2009	

–  Collaboration established with experiments, OpenLab, Geant4 and

ROOT	

»  Close interaction with experiments (bi-weekly meetings, reports in AF)	

»  Workshops each “six” months (April, October 2008, june 2009, next june

2010)	

–  Survey of HW and SW technologies	

»  Target multi-core (8-16/box) in the short term, many-core (96+/box) in

near future	

»  Optimize use of CPU/Memory architecture	

»  Exploit modern OS and compiler features (copy-on-write, MPI, OpenMP)	

–  Prototype solutions	

»  In the experiments and common projects (ROOT, Geant4)	

•  Improved Root-Math, ProofLite, MT-G4, flork&COW in ATLAS and CMS	

»  In the R&D project itself	

•  Parallel GAUDI, perfmon instrumentation of Gaudi and CMSSW	

20	

21	

22	

Floating Point Math on new CPUs	

–  Moore’s law and “progress” in compiler technology have made HEP to

focus mostly in (excessive?) accuracy	

»  Why spending effort in careful optimizations if in the meanwhile computers

gets much faster, hardware changes, compiler gets less stupid?	

»  The time of free lunches is over! 	

–  We need to re-establish excellence in numerical
computation competence in our field!	

»  We shall master approximations, vectorization, numerical methods beyond
simple FORmula TRANslation 	

–  Each new computing architecture changes the balance between accuracy
and speed in particular for FP	

»  The code emitted even for a trivial “1/sqrt(x)” depends on machine, OS,
compiler, compiler-option, even on the way we write it!	

–  One size does not fit all: need of accuracy and speed depends on the
context	

»  Cannot use global switches, replacement libraries, etc 	

»  We shall be able to select the required accuracy for each single use-case	

23	

Optimization of sequential FP algos	

24	

 // Energy loss and variance according to Bethe and Heitler, see also
 // Comp. Phys. Comm. 79 (1994) 157.
 //
 double p = localP.mag();
 double normalisedPath = fabs(p/localP.z())*materialConstants.radLen();
 double z = exp(-normalisedPath);
 double varz = (exp(-normalisedPath*log(3.)/log(2.))-
 exp(-2*normalisedPath));

 if (propDir==oppositeToMomentum) {
 // for backward propagation: delta(1/p) is linear in z=p_outside/p_inside
 theDeltaP += -p*(1/z-1);
 theDeltaCov(0,0) += varz/p/p;
 }else {
 // for forward propagation: calculate in p (linear in 1/z=p_inside/p_outside)
 theDeltaP += p*(z-1);
 double f = 1./p/z;
 theDeltaCov(0,0) += f*f*varz;
 }

This code will not become
faster in future (gcc 4.5 will help
a bit with compiler-time
transcendentals)	

IF speed is a concern	

 accuracy needs to be tuned	

 vectorization/parallelization
have to be accounted for 	

3

•  SIMD computational width
128 bits (current) → 2 doubles or 4 floats
256 bits (2010 - Sandy Bridge) → 4 doubles or 8 floats
512 bits (2011 - Larrabee) → 8 doubles or 16 floats
1024 bits (coming soon) → 16 doubles or 32 floats

•  It makes sense to start now to take it into consideration
developing pilot projects in production environment

•  Possible ways of doing it:
- Assembly
- Instrinsics
- Autovectorization
- SIMD-aware programming languages

•  Challenges using intrinsics:
- Reorganize your data to scale to increasing vector width
- Rethink your algorithm (do not readapt it!)

4

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

v1

v2

v3

v4

r1

r2

r3

r4

• =

r1 = v1*m11+v2*m12+v3*m13+v4*m14

r2 = v1*m21+v2*m22+v3*m23+v4*m24

r3 = v1*m31+v2*m32+v3*m33+v4*m34

r4 = v1*m41+v2*m42+v3*m43+v4*m44

t1 = [m11, m21, m31, m41] * v1

t2 = [m12, m22, m32, m42] * v2

t3 = [m13, m23, m33, m43] * v3

t4 = [m14, m24, m34, m44] * v4

R = t1 + t2 + t3 + t4

__m128 t0 = _mm_set1_ps(v0());
__m128 t1 = _mm_set1_ps(v1());
__m128 t2 = _mm_set1_ps(v2());
__m128 t3 = _mm_set1_ps(v3());

t0 = _mm_mul_ps(m0, t0);
t1 = _mm_mul_ps(m1, t1);
t2 = _mm_mul_ps(m2, t2);
t3 = _mm_mul_ps(m3, t3);

__m128 rs = _mm_add_ps(t0,
 _mm_add_ps(t1,
 _mm_add_ps(t2, t3)));

PARALLEL ARCHITECTURES
FOR HEP EVENT PROCESSING	

27	

HEP Application	

28	

29	

–  Complex and dispersed “legacy” software	

»  Difficult to manage/share/tune resources (memory, I/O): better to rely in

the support from OS and compiler	

»  Coding and maintaining thread-safe software at user-level is hard	

»  Need automatic tools to identify code to be made thread-aware	

•  Geant4: 10K lines modified! (thread-parallel Geant4) 	

•  Not enough, many hidden (optimization) details	

–  “Simple” multi-process seems more promising	

»  ATLAS: fork() (exploit copy-on-write), shmem (needs library support)	

»  LHCb: python	

»  PROOF-lite	

–  Other limitations are at the door (I/O, communication, memory)	

»  Proof: client-server communication overhead in a single box	

»  Proof-lite: I/O bound >2 processes per disk	

»  Online (Atlas, CMS) limit in in/out-bound connections to one box 	

Opportunity: Reconstruction Memory-Footprint shows large condition data	

How to share common data between different process?	

  multi-process vs multi-threaded	

  Read-only: Copy-on-write, Shared Libraries	

  Read-write: Shared Memory, sockets, files	

30	

CMS:	

1GB total Memory
Footprint	

Event Size 1 MB	

Sharable data 250MB	

Shared code 130MB	

Private Data 400MB !!	

–  Modern OS share read-only pages among processes dynamically	

»  A memory page is copied and made private to a process only when

modified	

–  Prototype in Atlas and LHCb	

»  Encouraging results as memory sharing is concerned (50% shared)	

»  Concerns about I/O (need to merge output from multiple processes)	

31	

Memory (ATLAS)	

One process: 700MB VMem and 420MB RSS	

COW:	

(before) evt 0: private: 004 MB | shared: 310 MB	

(before) evt 1: private: 235 MB | shared: 265 MB	

. . .	

(before) evt50: private: 250 MB | shared: 263 MB	

See Sebastien Binet’s talk @ CHEP09	

–  KSM is a linux driver that allows dynamically sharing identical memory pages
between one or more processes.	

»  It has been developed as a backend of KVM to help memory sharing between virtual
machines running on the same host.	

»  KSM scans just memory that was registered with it. Essentially this means that each
memory allocation, sensible to be shared, need to be followed by a call to a registry
function.	

–  Test performed “retrofitting” TCMalloc with KSM	

»  Just one single line of code added!	

–  CMS reconstruction of real data (Cosmics with full detector)	

»  No code change	

»  400MB private data; 250MB shared data; 130MB shared code	

–  ATLAS	

»  No code change 	

»  In a Reconstruction job of 1.6GB VM, up to 1GB can be shared with KSM 	

32	

ATLAS results by Yushu Yao ���
Comparing FREE Memory (light blue) when running 2 jobs ���
 KSM frees 500MB System Memory	

~1GB	
 Free	
 Memory	

~500MB	
 Free	
 Memory	

33	

34	

35	

Parallelization of Gaudi Framework	

36	

GaudiPython Parallel: Specifics	

–  TES transferred by Serialise/Deserialise	

–  Auto-optimisation of data transfer	

 37	

GaudiPython Parallel	

–  Reconstruction (Brunel)	

»  FEST-2009-Data.py : 1000 Events	

•  From $BRUNELOPTS	

3/5/10	

38	

eoin.sm
ith@

cern.ch
PH

-SFT
 : R

&
D

 M
ulticore	

Run
Type	

CPU%	

 T_elapsed	

 T_init	

 T_run	

 Speedup	

Serial	

 1334	

 47	

 1287	

 1	

parallel=5	

 317	

 47	

 280	

 4.6	

  ~1.5s/event	

  Parallel Overhead 3%	

  Speedup Near-Linear	

Gaudi : HEP Event Processing	

39	

• Transient Event
Store : Part of
Framework	

• Stores DataObjects
during processing	

• Loaded from
Persistent Storage at
Start	

• Constantly modified
during run	

HEP data processing: ���
beyond event-by-event processing	

–  No need of a coherent event state:	

»  The “Event” occupies a small part of the resident memory	

•  Small overhead to keep several event in memory at once	

»  Algorithms 	

•  read specific event-fragments, store new fragments: never modify

existing ones	

•  Dependencies are known: algorithms can be scheduled in parallel	

•  We can distribute algorithms among cores, improving data and code locality

in caches	

»  Storage:	

•  “Event-Fragments” map root branches: independent of each other	

•  Can be streamed as soon as created, no need to wait for the full event to be

ready	

–  Conditions shared among events and (some) algorithms	

»  Event parallelism will profit of coherent shared conditions	

»  Few conditions are used by different algorithms 	

»  Algorithm parallelism can make conditions private to each one\	

No work started yet: opportunity for SuperB leveraging
Babar code and data	

 40	

41	

–  Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software	

»  Prototypes using posix-thread, OpenMP and parallel gcclib
»  On going effort in collaboration with OpenLab and Root teams to

provide basic thread-safe/multi-thread library components
•  Random number generators	

•  Parallel minimization/fitting algorithms	

•  Parallel/Vector linear algebra	

–  Positive and interesting experience with MINUIT	

»  Parallelization of parameter-fitting opens the opportunity to enlarge the

region of multidimensional space used in physics analysis to essentially
the whole data sample. 	

42	

–  Minimization of Maximum Likelihood or χ2 requires iterative computation of
the gradient of the NLL function	

–  Execution time scales with number θ free parameters and the number N of input
events in the fit	

–  Two strategies for the parallelization of the gradient and NLL calculation:	

1.  Gradient or NLL calculation on 	

	

the same multi-cores node (OpenMP)	

1.  Distribute Gradient on different 	

	

nodes (MPI) and parallelize NLL 	

	

calculation on each multi-cores 	

	

node (pthreads): hybrid solution	

A. L. and Lorenzo Moneta	

–  Waiting time for fit to converge down from several days to a night (Babar
examples) 	

»  iteration on results back to a human timeframe!	

43	

60 cores	

30 cores	

15 cores	

Parallelism implementation 	

–  High grain parallelism need to be implemented using multi-thread	

–  Low level multi-threading is well established at OS and posix
level (now also in C++0x std)	

–  At user level many implementation technologies exist	

»  Intel alone today proposes 4/5 different technologies!	

»  Watch out for compatibility with GGPU approaches	

–  A serious investigation of the technology trends and of what best
fit our use cases is required before starting to fill up the code
with pragmas and not standard keywords	

44	

–  Recent progress shows that we shall be able to exploit next
generation multicore with “small” changes to HEP code	

»  Exploit copy-on-write (COW) in multi-processing (MP)	

»  Develop an affordable solution for the sharing of the output file	

»  Leverage Geant4 experience to explore multi-thread (MT) solutions	

–  Continue optimization of memory hierarchy usage	

»  Study data and code “locality” including “core-affinity”	

–  Expand Minuit experience to other areas of “final” data analysis,
such as machine learning techniques	

»  Investigating the possibility to use GPUs and custom FPGAs solutions	

–  “Learn” how to run MT/MP jobs on the grid	

»  workshop at CERN, June 2009:

http://indico.cern.ch/conferenceDisplay.py?confId=56353	

»  Tests ongoing with CERN/IT (just got two machines with a dedicated

queue)	

45	

–  A lot of interest is growing around GPUs	

»  Particular interesting is the case of NVIDIA cards using CUDA for

programming	

»  Impressive performance (even 100x faster than a normal CPU), but high

energy consumption (up to 200 Watts)	

»  A lot of project ongoing in HPC community. More and more example in HEP

(wait for tomorrow talk…)	

»  Great performance using single floating point precision (IEEE 754 standard): up

to 1 TFLOPS (w.r.t 10 GFLOPS of a standard CPU)	

»  Need to rewrite most of the code to benefit of this massive parallelism

(thread parallelism), especially memory usage: it can be not straightforward…	

»  The situation can improve with OpenCL (Tim Mattson visiting CERN next

Monday) and Intel Larrabee architecture (standard x86)	

46	

– Hardware and software technologies may come to the
rescue in many areas	

»  We shall be ready to exploit them	

– Scaling to many-core processors (96-core processors
foreseen for next year) will require innovative solutions	

»  MP and MT beyond event level	

»  Fine grain parallelism (OpenCL, custom solutions?)	

»  Parallel I/O	

– Possible use of GPUs for massive parallelization	

– But, Amdahl docet, algorithm concept have to change
to take advantages on parallelism: think parallel, write
parallel!	

47	

BACKUP	

48	

Map/Reduce	

Established, yet evolving paradigm	

»  Original (google, Hadhoop) Map/Reduce takes a set of input key/value
pairs, and produces a set of output key/value pairs.	

»  Many implementations 	

»  Map (written by the user) 	

•  takes an input pair and produces a set of intermediate key/value pairs. 	

»  The MapReduce library 	

•  groups together all intermediate values associated with the same

intermediate key I and passes them to the Reduce function.	

»  Reduce , also written by the user, 	

•  accepts an intermediate key I and a set of values for that key. It merges

together these values to form a possibly smaller set of values. 	

49	

Event Building!	

50	

Map: Detector frontend assign event-id to each fragment	

DAQ dispatch all fragment with same id to a given filter node	

Reduce: filter node assemble the event and process it	

