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Moore’s law 	



Transistors used to increase raw-power	

 Increase global power	





Hardware continues to follow Moore’s law	


–  More and more transistors available for 

computation	


»  More (and more complex) execution units: 

hundreds of new instructions	



»  Longer SIMD (Single Instruction Multiple Data) 
vectors 	



»  More hardware threading	


»  More and more cores	
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While hardware continued to follow Moore’s 
law, the perceived exponential grow of the 
“effective” computing power faded away in 
hitting three “walls”:	



1. The memory wall	


2. The power wall	


3. The instruction level parallelism (micro-
architecture) wall	
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– Processor clock rates have 
been increasing faster than 
memory clock rates	



–  larger and faster “on chip” 
cache memories help 
alleviate the problem but 
does not solve it	



– Latency in memory access 
is often the major 
performance issue in 
modern software 
applications	
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Core 1 Core n  … 

Main memory:	


200-300 cycles	





–  Processors consume more and more power the faster they go	


–  Not linear: 	



»  73% increase in power gives just 13% improvement in performance	


»  (downclocking a processor by about 13% gives roughly half the power 

consumption)	



–  Many computing center are today limited by the total electrical power 
installed and the corresponding cooling/extraction power	



–  Green Computing!	



http://www.processor-comparison.com/power.html	
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–  Longer and fatter parallel 
instruction pipelines has been a 
main architectural trend in `90s	



–  Hardware branch prediction, 
hardware speculative execution, 
instruction re-ordering (a.k.a. 
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable 
examples of techniques to boost 
Instruction level parallelism (ILP) 	



–  In practice inter-instruction data 
dependencies and run-time 
branching limit the amount of 
achievable ILP	
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Core 2 execution ports	



–  Intel’s Core 
microarchitecture 
can handle:	



»  Four instructions in 
parallel:	



»  Every cycle	



»  Data width of 128 
bits	



8	



Issue ports in the Core 2 micro-architecture���
(from Intel Manual No. 248966-016)	



Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

Integer 
Alu 

Int. SIMD 
Alu 

x87 FP 
Multiply 

SSE FP 
Multiply 

FSS Move 
& Logic 

QW Shuffle 

Integer 
Alu 

Int. SIMD 
Multiply 

FP 
Add 

FSS Move 
& Logic 

QW Shuffle 

Integer 
Alu 

Int. SIMD 
Alu 

FSS Move 
& Logic 

QW Shuffle 

Alu = Arithmetic, Logical Unit 
FSS = FP/SIMD/SSE2 
QW = Quadword (64-bits) 

Integer 
Load 

Store 
 Address 

Store 
Data 

FP 
Load 

Jump Exec 
Unit 

DIV 
SQRT 



Copyright © 2008 Intel Corporation. All rights 
reserved. 

   The number of transistors on a chip doubles every 24 month 
   Processor architectures changed from area limited to power limited 

   ILP useful for ~4 parallel instructions 
   Instruction pipeline useful if ≤ 30 stages 
   Power consumption grows about cubically with frequency 
   Processing capability grows faster than memory speed 

   Single core performance is growing slower than it used to be 

   SMT/HT can mitigate the situation for certain workloads 
   CMP/Multi-Core seems to be a reasonable “compromise” 
   Opportunity for performance to increase faster than Moore’s Law 



– A turning point was reached and a new technology 
emerged: multicore	



»  Keep low frequency and consumption	



»  Transistors used for multiple cores on a single chip: 2, 4, 6, 8 
cores on a single chip	



– Multiple hardware-threads on a single core	


»  simultaneous Multi-Threading (Intel Core i7 2 threads per core 

(4 cores), Sun UltraSPARC T2 8 threads per core (8 cores))	



– Dedicated architectures:	


»  GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel 

Larrabee)	


»  CELL	



»  FPGA (Reconfigurable computing)	
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Copyright © 2008 Intel Corporation. All rights 
reserved. 

Energy Efficient Petascale with Multi-threaded Cores 

QUAD-CORE 

All products, dates, and figures are preliminary and are subject to change without any notice.  



Copyright © 2008 Intel Corporation. All rights 
reserved. 

Intel 
Architecture 

Core �

New Materials and Designs 

Core Enhancements 

Platform Enhancements 

   Multi to Many-Core 



Copyright © 2008 Intel Corporation. All rights 
reserved. 

Intel 
Architecture 

Core �

Tri-Gate, Nanotubes  

MMX  SSE  AVX  

PCIe, IMC, QPI, SOC  

Dual  Quad  Octo  



Copyright © 2008 Intel Corporation. All rights 
reserved. 

Future Vision, does not represent real Intel product 

Package Technology to Address the Memory Bandwidth Challenge for Tera-scale Computing, Intel Technology Journal, Volume 11, Issue 3, 2007 



Copyright © 2008 Intel Corporation. All rights 
reserved. 

2010 2007 2008 2009 

NEW 
Microarchitecture 

45nm 

NEW 
Microarchitecture 

32nm 

2006 

NEW 
Microarchitecture 

65nm 

Forecast 

Future options subject to change without notice. 

e.g. Intel® AVX e.g. Intel® QuickPath Architecture	





Copyright © 2008 Intel Corporation. All rights 
reserved. 

  Highly parallel, IA programmable 
architecture in development 

  Ease of scaling for software 
ecosystem 

  Array of enhanced IA cores 
  New Cache Architecture 
  New Vector Processing Unit 
  Scalable to TFLOPS performance 

Cache 

Special 
Function 

& I/O 

… IA++ 

… 

… 
… … … 

… IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

Future options subject to change without notice. 
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Exploit all 7 “parallel” dimensions of modern computing architecture 
for HPC	



– Inside a core (climb the ILP wall)	


1.  Superscalar: Fill the ports (maximize instruction per cycle)	



2.  Pipelined: Fill the stages (avoid stalls)	



3.  SIMD (vector): Fill the register width  (exploit SSE, AVX)	



– Inside a Box (climb the memory wall)	


4.  HW threads: Fill up a core (share core & caches)	



5.  Processor cores: Fill up a processor (share of low level resources)	



6.  Sockets: Fill up a box (share high level resources)	



– LAN & WAN (climb the network wall)	


7.  Optimize scheduling and resource sharing on the Grid	



HEP has been traditionally good (only) in the latter	
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–  HEP code does not exploit the power of current processors	


»  One instruction per cycle at best	



»  Little or no use of vector units (SIMD)	


»  Poor code locality 	



»  Abuse of the heap	



–  Running N jobs on N=8 cores still efficient but:	


»  Memory (and to less extent cpu cycles) wasted in non sharing	



•  “static” condition and geometry data	


•  I/O buffers	


•  Network and disk resources	



»  Caches (memory on CPU chip) wasted and trashed	


•  L1 cache local per core, L2 and L3 shared	


•  Not locality of code and data (thread/core affinity)	



–  This situation is already bad today, will become only worse in 
future many-cores architectures	





HEP software on multicore: ���
an R&D project (WP8 in CERN/PH)	


The aim of  the WP8 R&D project  is to investigate novel software 

solutions to efficiently exploit the new multi-core architecture of 
modern computers in our HEP environment	



Motivation: 	



	

industry trend in workstation and “medium range” computing	



Activity divided in four “tracks”	


»  Technology Tracking & Tools	



»  System and core-lib optimization	



»  Framework Parallelization	


»  Algorithm Parallelization	



Coordination of activities already on-going in exps, IT, labs 	
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Summary of activity in 2008/2009	


–  Collaboration established with experiments, OpenLab, Geant4 and 

ROOT	


»  Close interaction with experiments (bi-weekly meetings, reports in AF)	


»  Workshops each “six” months (April, October 2008, june 2009, next june 

2010)	



–  Survey of HW and SW technologies	


»  Target multi-core (8-16/box) in the short term, many-core (96+/box) in 

near future	


»  Optimize use of CPU/Memory architecture	


»  Exploit modern OS and compiler features (copy-on-write, MPI, OpenMP)	



–  Prototype solutions	


»  In the experiments and common projects (ROOT, Geant4)	



•  Improved Root-Math, ProofLite, MT-G4, flork&COW in ATLAS and CMS	



»  In the R&D project itself	


•  Parallel GAUDI, perfmon instrumentation of Gaudi and CMSSW	
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Floating Point Math on new CPUs	


–  Moore’s law and “progress” in compiler technology have made HEP to 

focus mostly in (excessive?) accuracy	


»  Why spending effort in careful optimizations if in the meanwhile computers 

gets much faster, hardware changes, compiler gets less stupid?	


»  The time of free lunches is over! 	



–  We need to re-establish excellence in numerical 
computation competence in our field!	



»  We shall master approximations, vectorization, numerical methods beyond 
simple FORmula TRANslation 	



–  Each new computing architecture changes the balance between accuracy 
and speed in particular for FP	



»  The code emitted even for a trivial “1/sqrt(x)” depends on machine, OS, 
compiler, compiler-option, even on the way we write it!	



–  One size does not fit all: need of accuracy and speed depends on the 
context	



»  Cannot use global switches, replacement libraries, etc 	


»  We shall be able to select the required accuracy for each single use-case	
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Optimization of sequential FP algos	
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 // Energy loss and variance according to Bethe and Heitler, see also 
  // Comp. Phys. Comm. 79 (1994) 157.  
  // 
  double p = localP.mag(); 
  double normalisedPath = fabs(p/localP.z())*materialConstants.radLen(); 
  double z = exp(-normalisedPath); 
  double varz = (exp(-normalisedPath*log(3.)/log(2.))- 
     exp(-2*normalisedPath)); 

  if ( propDir==oppositeToMomentum ) { 
    // for backward propagation: delta(1/p) is linear in z=p_outside/p_inside 
      theDeltaP += -p*(1/z-1); 
    theDeltaCov(0,0) += varz/p/p; 
  }else {   
     // for forward propagation: calculate in p (linear in 1/z=p_inside/p_outside) 
      theDeltaP += p*(z-1); 
    double f = 1./p/z; 
    theDeltaCov(0,0) += f*f*varz; 
  } 

This code will not become 
faster in future (gcc 4.5 will help 
a bit with compiler-time 
transcendentals)	



IF speed is a concern	


  accuracy needs to be tuned	


  vectorization/parallelization 
have to be accounted for  	
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•  SIMD computational width 
128 bits (current) → 2 doubles or 4 floats 
256 bits (2010 - Sandy Bridge) → 4 doubles or 8 floats 
512 bits (2011 - Larrabee) → 8 doubles or 16 floats 
1024 bits (coming soon) → 16 doubles or 32 floats 

•  It makes sense to start now to take it into consideration 
developing pilot projects in production environment 

•  Possible ways of  doing it: 
- Assembly 
- Instrinsics 
- Autovectorization 
- SIMD-aware programming languages 

•  Challenges using intrinsics: 
- Reorganize your data to scale to increasing vector width 
- Rethink your algorithm (do not readapt it!) 
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m11    m12    m13    m14 

m21    m22    m23    m24 

m31    m32    m33    m34 

m41    m42    m43    m44 

v1 

v2 

v3 

v4 

r1 

r2 

r3 

r4 

• = 

r1 = v1*m11+v2*m12+v3*m13+v4*m14 

r2 = v1*m21+v2*m22+v3*m23+v4*m24 

r3 = v1*m31+v2*m32+v3*m33+v4*m34 

r4 = v1*m41+v2*m42+v3*m43+v4*m44 

t1 = [m11, m21, m31, m41] * v1 

t2 = [m12, m22, m32, m42] * v2 

t3 = [m13, m23, m33, m43] * v3 

t4 = [m14, m24, m34, m44] * v4 

R = t1 + t2 + t3 + t4 

__m128 t0 = _mm_set1_ps(v0()); 
__m128 t1 = _mm_set1_ps(v1()); 
__m128 t2 = _mm_set1_ps(v2()); 
__m128 t3 = _mm_set1_ps(v3()); 

t0 = _mm_mul_ps(m0, t0); 
t1 = _mm_mul_ps(m1, t1); 
t2 = _mm_mul_ps(m2, t2); 
t3 = _mm_mul_ps(m3, t3); 

__m128 rs = _mm_add_ps(t0, 
            _mm_add_ps(t1, 
            _mm_add_ps(t2, t3))); 



PARALLEL ARCHITECTURES 
FOR HEP EVENT PROCESSING	
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HEP Application	
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–  Complex and dispersed “legacy” software	


»  Difficult to manage/share/tune resources (memory, I/O): better to rely in 

the support from OS and compiler	


»  Coding and maintaining thread-safe software at user-level is hard	


»  Need automatic tools to identify code to be made thread-aware	



•  Geant4: 10K lines modified! (thread-parallel Geant4) 	


•  Not enough, many hidden (optimization) details	



–  “Simple” multi-process seems more promising	


»  ATLAS: fork() (exploit copy-on-write), shmem (needs library support)	


»  LHCb: python	


»  PROOF-lite	



–  Other limitations are at the door (I/O, communication, memory)	


»  Proof: client-server communication overhead in a single box	


»  Proof-lite: I/O bound >2 processes per disk	


»  Online (Atlas, CMS) limit in in/out-bound connections to one box 	





Opportunity: Reconstruction Memory-Footprint shows large condition data	



How to share common data between different process?	



  multi-process vs multi-threaded	



  Read-only: Copy-on-write, Shared Libraries	



  Read-write: Shared Memory, sockets, files	
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CMS:	


1GB total Memory 
Footprint	


Event Size 1 MB	


Sharable data 250MB	


Shared code  130MB	


Private Data  400MB !!	





–  Modern OS share read-only pages among processes dynamically	


»  A memory page is copied and made private to a process only when 

modified	



–  Prototype in Atlas and LHCb	


»  Encouraging results as memory sharing is concerned (50% shared)	



»  Concerns about I/O (need to merge output from multiple processes)	



31	



Memory (ATLAS)	


One process:  700MB VMem and  420MB RSS	


COW:	


(before) evt 0: private: 004 MB | shared: 310 MB	


(before) evt 1: private: 235 MB | shared: 265 MB	


. . .	


(before) evt50: private: 250 MB | shared: 263 MB	



See Sebastien Binet’s talk @ CHEP09	





–  KSM is a linux driver that allows dynamically sharing identical memory pages 
between one or more processes.	



»  It has been developed as a backend of KVM to help memory sharing between virtual 
machines running on the same host.	



»  KSM scans just memory that was registered with it. Essentially this means that each 
memory allocation, sensible to be shared, need to be followed by a call to a registry 
function.	



–  Test performed “retrofitting” TCMalloc with KSM	


»  Just one single line of code added!	



–  CMS reconstruction of real data (Cosmics with full detector)	


»  No code change	


»  400MB private data; 250MB shared data; 130MB shared code	



–  ATLAS	


»  No code change 	



»  In a Reconstruction job of 1.6GB VM, up to 1GB can be shared with KSM 	
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ATLAS results by Yushu Yao ���
Comparing FREE Memory (light blue) when running 2 jobs ���
 KSM frees 500MB System Memory	



~1GB	
  Free	
  Memory	
  
~500MB	
  Free	
  Memory	
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Parallelization of Gaudi Framework	
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GaudiPython Parallel: Specifics	



–  TES transferred by Serialise/Deserialise	



–  Auto-optimisation of data transfer	

 37	





GaudiPython Parallel	



–  Reconstruction (Brunel)	


»  FEST-2009-Data.py : 1000 Events	



•  From $BRUNELOPTS	



3/5/10	
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eoin.sm
ith@

cern.ch                                     
PH

-SFT
 : R

&
D

 M
ulticore	



Run 
Type	



CPU%	

 T_elapsed	

 T_init	

 T_run	

 Speedup	



Serial	

 1334	

 47	

 1287	

 1	



parallel=5	

 317	

 47	

 280	

 4.6	



  ~1.5s/event	


  Parallel Overhead 3%	


  Speedup Near-Linear	





Gaudi : HEP Event Processing	
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• Transient Event 
Store : Part of 
Framework	


• Stores DataObjects 
during processing	


• Loaded from 
Persistent Storage at 
Start	


• Constantly modified 
during run	





HEP data processing: ���
beyond event-by-event processing	


–  No need of a coherent event state:	



»  The “Event” occupies a small part of the resident memory	


•  Small overhead to keep several event in memory at once	



»  Algorithms 	


•  read specific event-fragments, store new fragments: never modify 

existing ones	


•  Dependencies are known: algorithms can be scheduled in parallel	


•  We can distribute algorithms among cores, improving data and code locality 

in caches	


»  Storage:	



•  “Event-Fragments” map root branches: independent of each other	


•  Can be streamed as soon as created, no need to wait for the full event to be 

ready	



–  Conditions shared among events and (some) algorithms	


»  Event parallelism will profit of coherent shared conditions	


»  Few conditions are used by different algorithms 	


»  Algorithm parallelism can make conditions private to each one\	



No work started yet: opportunity for SuperB leveraging 
Babar code and data	
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–  Ultimate performance gain will come from parallelizing 
algorithms used in current LHC physics application 
software	



»  Prototypes using posix-thread, OpenMP and parallel gcclib 
»  On going effort in collaboration with OpenLab and Root teams to 

provide basic thread-safe/multi-thread library components 
•  Random number generators	


•  Parallel minimization/fitting algorithms	


•  Parallel/Vector linear algebra	



–  Positive and interesting experience with MINUIT	


»  Parallelization of parameter-fitting opens the opportunity to enlarge the 

region of multidimensional space used in physics analysis to essentially 
the whole data sample. 	
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–  Minimization of Maximum Likelihood or χ2 requires iterative computation of 
the gradient of the NLL function	



–  Execution time scales with number θ free parameters and the number N of input 
events in the fit	



–  Two strategies for the parallelization of the gradient and NLL calculation:	



1.  Gradient or NLL calculation on 	



	

the same multi-cores node (OpenMP)	



1.  Distribute Gradient on different 	



	

nodes (MPI) and parallelize NLL 	



	

calculation on each multi-cores 	



	

node (pthreads): hybrid solution	



A. L. and Lorenzo Moneta	





–  Waiting time for fit to converge down from several days to a night (Babar 
examples) 	


»  iteration on results back to a human timeframe!	
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60 cores	



30 cores	



15 cores	





Parallelism implementation 	


–  High grain parallelism need to be implemented using multi-thread	



–  Low level multi-threading is well established at OS and posix 
level (now also in C++0x std)	



–  At user level many implementation technologies exist	


»  Intel alone today proposes 4/5 different technologies!	



»  Watch out for compatibility with GGPU approaches	



–  A serious investigation of the technology trends and of what best 
fit our use cases is required before starting to fill up the code 
with pragmas and not standard keywords	
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–  Recent progress shows that we shall be able to exploit next 
generation multicore with “small” changes to HEP code	


»  Exploit copy-on-write (COW) in multi-processing (MP)	


»  Develop an affordable solution for the sharing of the output file	



»  Leverage Geant4 experience to explore multi-thread (MT) solutions	



–  Continue optimization of memory hierarchy usage	


»  Study data and code “locality” including “core-affinity”	



–  Expand Minuit experience to other areas of “final” data analysis, 
such as machine learning techniques	


»  Investigating the possibility to use GPUs and custom FPGAs solutions	



–  “Learn” how to run MT/MP jobs on the grid	


»  workshop at CERN, June 2009: 

http://indico.cern.ch/conferenceDisplay.py?confId=56353	


»  Tests ongoing with CERN/IT (just got two machines with a dedicated 

queue)	
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–  A lot of interest is growing around GPUs	


»  Particular interesting is the case of NVIDIA cards using CUDA for 

programming	


»  Impressive performance (even 100x faster than a normal CPU), but high 

energy consumption (up to 200 Watts)	


»  A lot of project ongoing in HPC community. More and more example in HEP 

(wait for tomorrow talk…)	


»  Great performance using single floating point precision (IEEE 754 standard): up 

to 1 TFLOPS (w.r.t 10 GFLOPS of a standard CPU)	


»  Need to rewrite most of the code to benefit of this massive parallelism 

(thread parallelism), especially memory usage: it can be not straightforward…	


»  The situation can improve with OpenCL (Tim Mattson visiting CERN next 

Monday) and Intel Larrabee architecture (standard x86)	
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– Hardware and software technologies may come to the 
rescue in many areas	



»  We shall be ready to exploit them	



– Scaling to many-core processors (96-core processors 
foreseen for next year) will require innovative solutions	



»  MP and MT beyond event level	



»  Fine grain parallelism (OpenCL, custom solutions?)	



»  Parallel I/O	



– Possible use of GPUs for massive parallelization	



– But, Amdahl docet, algorithm concept have to change 
to take advantages on parallelism: think parallel, write 
parallel!	
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BACKUP	
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Map/Reduce	


Established, yet evolving paradigm	



»  Original (google, Hadhoop) Map/Reduce takes a set of input key/value 
pairs, and produces a set of output key/value pairs.	



»  Many implementations 	


»  Map (written by the user) 	



•  takes an input pair and produces a set of intermediate key/value pairs. 	



»  The MapReduce library 	


•  groups together all intermediate values associated with the same 

intermediate key I and passes them to the Reduce function.	



»  Reduce , also written by the user, 	


•  accepts an intermediate key I and a set of values for that key. It merges 

together these values to form a possibly smaller set of values. 	
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Event Building!	
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Map: Detector frontend assign event-id to each fragment	


DAQ dispatch all fragment with same id to a given filter node	


Reduce: filter node assemble the event and process it	




