
Imperial College
London

Past experience on analysis
environments

Ulrik Egede
11 March 2010

B
ea

m
 in

du
c e

d
“s

pl
as

h”
 in

 L
H

C
b

Ulrik Egede 2/1611 Mar 2010

Introduction
● I will try here to look at

● User and developer relationship
● Tools to ease problem solving and consistency checking
● Documentation and training

●Will illustrate both good practise from the past and pitfalls
to avoid

●Recommendations are written in bold red for easy
identification.

Introduction

Ulrik Egede 3/1611 Mar 2010

Use-cases and interface reviews
●Really just comments on any kind of software
development but of particular importance for analysis

●Develop and document a large number of use-cases
● Pre job merging

● A user defines before a job is running how the output data
from the sub jobs should be merged. When all parts of the job
have finished the ones that terminated successfully have
their output merged without any user interaction.

Review the user interface by dry-testing use cases
against it, develop partial implementations in prototypes
etc.

● Iterate this process throughout lifetime of
experiment.

Introduction

Ulrik Egede 4/1611 Mar 2010

Pseudo languages
●The configuration of jobs often develops into pseudo-
languages

● Different workings in different part of code
● Notation not documented
● Mixture of static and dynamic features
● Home written interpreters which are full of bugs and
features

An example from LHCb
● (BPVDIRA> %(IntDIRA)s) & (INTREE((ABSID=='mu-') & (TRCHI2DOF< %
(TrackChi2)s))) & (INTREE((ABSID=='pi+') & (TRCHI2DOF< %(TrackChi2)s
))) & (BPVVDCHI2 > %(IntFlightCHI2)s)

●Lesson is to use object oriented parts of scripting
languages such as Python or Ruby for the
configuration.

Framework

Ulrik Egede 5/1611 Mar 2010

What is the default value?
●To understand the configuration of an analysis job is
often very hard due to an overlay of:

● “Default” value specified in C++ code
● Different “default” value in associated configuration file
● Yet another “default” value set in some “default”
configuration file that is always loaded.

● Users setting “magic” values they found in some old email
thread and then forgot about.

●Turn configuration into intelligent objects
● Full history of overlaying configuration changes.
● Persist configuration with job results so it can be queried in
retrospect.

Framework

Ulrik Egede 6/1611 Mar 2010

Users and developers
●There is a real danger in analysis frameworks to develop
into a “them versus us” way of working.

●Typical steps are like ...
● In the beginning not many tools are available and
everybody is an expert

● Tools start to become available
● Pseudo-language develops to configure tools
● Developers and users no longer speak the same language
● Users need developers to add even trivial extensions
● Physics suffers as users “make do” with what is already
there.

● I recommend to create interfaces in consultation with
non-experts. Maybe create short-lived focus groups.

Framework

Ulrik Egede 7/1611 Mar 2010

GUI's
●Several attempts of high-level drag-and-drop style GUI's
have been attempted in the past.

● Great for getting an initial feel of a framework
● A real pain for performing repetitive work

● If developing a GUI make sure that it has one-to-one
correspondence to a well documented and easy to use
API.

● Don't allow the developers to hide a poor API behind a
few sleek looking windows ...

Framework

Ulrik Egede 8/1611 Mar 2010

Separation of data, code and configuration
● In many current frameworks there is often in the same
script file

● A list of the data files that are to be analysed
● The creation of new code
● The configuration of existing code

●From any automatic processing of analysis code this is a
disaster; different operations are required on each part.

● Keep distinct what are logically distinct entities, even if
implementation is the same.

Framework

Ulrik Egede 9/1611 Mar 2010

User datasets
●A tricky bit of many user analyses is simple bookkeeping
of what data has been analysed and under which
conditions.

● Dataset definitions often exchanged on Wiki pages, email or
pieces of paper.

●Ensure that all user datasets are registered in some
bookkeeping with proper history of how they were
created.

●Make it easy to replicate user data for distributed
analysis.

Data

Ulrik Egede 10/1611 Mar 2010

Duplication of data
●Any experiment I have been associated with faced the
problem of users duplicating complicated but space
efficient data structures into simple Ntuples in ZEBRA or
ROOT format.

●The gain from the user perspective is a familiar interface,
independence from experiment code and access speed.

●The loss from experiment (and ultimately user)
perspective is

● Duplication of data (might not be harmful)
● Loss of bookkeeping (always harmful)
● Duplication of selection/fitting code (often harmful)
● Lack of documentation (always harmful)

Data

Ulrik Egede 11/1611 Mar 2010

Duplication of data
●Most collaborations keep fighting the “do not copy data”
wars – and always lose them!

●So what to do?
● Design your most compressed data type (µDST or
whatever) first and not last.

● Make access to this data format as simple as possible;
minimal installation and working on multiple
architectures.

Data

Ulrik Egede 12/1611 Mar 2010

Enforce documentation
● If the implementation of interfaces and configuration is
well defined, it is easy to enforce documentation at time
of development

● Type checking
● Short document string
● Example of usage
●

Usability

Ulrik Egede 13/1611 Mar 2010

Software training
●Training in the use of software is one of the things that
LHCb has got right.

● Beginners training a part of every collaboration week
● Always teach the use of the latest software
● No registration required
● Often users will attend more than once to get updated on
latest changes.

●Recommendation is to copy this
●Request user feedback on any software training

Usability

Ulrik Egede 14/1611 Mar 2010

Analysis in a distributed environment
● In BaBar there were several attempts to catch up on the
Grid world for analysis of data.

● They all failed (afaik)

●To make efficient use of a distributed system, it needs to
be built in from the beginning. This requires:

● Equivalent execution in Local and Grid environments
● Ability to perform a “static” analysis of analysis job
● Performance and debug information available for Grid jobs

●Use a proper user interface for interaction with the Grid
● Ganga or similar tool with properly developed
application plugins

Usability

Ulrik Egede 15/1611 Mar 2010

Non-centralised users
●The support of all users at a centralised facility
(CERN/SLAC) through interactive logins is expensive

●Maybe consider simply not doing it !
●This obviously puts up some requirements

● Full Grid access to all data
● Software installation should be trivial

● Consider yum or similar from modern Linux distributions.
● Going down the route of pre-configured virtual machines (like

cernVM) is a possibility. Need user and site acceptance.
● Self testing should be an integral part of the installation, ie a
given software module should be able to tell if it works.

Usability

Ulrik Egede 16/1611 Mar 2010

Conclusion
●To develop a great system for end-users, they should be
included in the design process.

● Focus groups
● Extensive development of use cases

●Configuration, data access, Grid access and user training
are the trickiest areas to get right.

●Don't re-invent the wheel where there are good solutions
already available.

Conclusion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

