M. A. Famiano Asy-EOS Meeting May 22, 2010

ISOTOPIC OBSERVABLES OF THE SYMMETRY ENERGY APPROACHING SATURATION DENSITY

Supported by NSF Grants #PHY-0757257, #PHY-0923087

Introduction

- Significance of the symmetry energy at low and high density
- Isotopic observables near saturation density
 - Improving neutron-proton ratios
 - Constraining parameters
 - Experimental meaning of saturation density
- Experimental plans
 - Exceeding nuclear saturation density

Astrophysical Importance of the Nuclear Asymmetry Term

Macroscopic properties:

- Neutron star radii, moments of inertia and central densities.
- Maximum neutron star masses and rotation frequencies.
- Thickness of the inner crust.
 - Frequency change accompanying star quakes.
- Role of Kaon condensates and mixed quark-hadron phases in the stellar interior.
- Proton and electron fractions throughout the star.
 - Cooling of proto-neutron star.

Asymmetric Nuclear Matter

Effective Masses Alter In-Medium Cross-Sections

⁴⁰Ca+¹⁰⁰Zn b=0, E/A = 200 MeV

Same Line Type: Different γ but same in-medium σ .

Diamonds: Same γ and different in-medium σ .

 $\sigma_{\scriptscriptstyle{medium}}$ / $\sigma_{\scriptscriptstyle{free}}$ pprox

Experimental Details

- Beam: ^{40,48}Ca +^{112,124}Sn 140MeV/A
- Also ^{112,124}Sn +^{112,124}Sn 50 MeV/A
- Neutron-proton observables
 - N/P ratios
 - Average rapidity dist.
 - N-P correlations?
- Sensitivity near saturation
- Data necessarily includes clustering in exactly the right amounts

Experimental Configuration

Neutron Spectra,

Corrolations

Towards Higher Density

Isotopic observables Possible difficulties in "freeze out" conditions?

Stiffer EOS favors symmetric Dense regions: More +: Lower π^{-}/π^{+} .

Softer EOS is less strongly Symmetric: Suppression of π^+ .

AT-TPC

	Density R
\checkmark	t/ ³ He production
\checkmark	Pre-equilibrium nucleo
\checkmark	Isospin fractionation
\checkmark	Isoscaling
\checkmark	Isospin diffusion
×	Neutron-proton correl:

SAMURAI Configuration

6/12/2003

Current Concept: Modification of EOS TPC.

SAMURAI Dipole Specifications			
Magnet Type	Н		
Maximum Rigidity	7 Tm		
Pole Diameter	2m		
Return Yoke Dimensions	6.8m x 3m x 1.4 m		
Top and Bottom			
Return Yoke Dimensions	1.7m x 0.7m x 1.88m		
Sides			
Central Field	0.4-3 T (at the center)		
Magnet Gap	0.88 m - 0.8 m with vacuum chamber		
Mounting	Rotatable Base		
Total Weight	630 T		

SAMURAI TPC Parameters

Pad Plane Area	1.3m x 0.9 m
Number of Pads	11664 (108 x 108)
Pad Size	12 mm x 8 mm
Drift Distance	55 cm
Pressure	1 atm
Gas Composition	90% Ar + 10% CH ₄
Gas Gain	3000
E Field	120 V/cm
Drift Velocity	5cm/μs
dE/dx range	Z=1-8, π, p,d,t,He,Li-O
Two Track Resolution	2.5 cm
Multiplicity Limit	200

Current Landscape

Summary

- Recent progress in isotopic observables of the low-density asy-EOS: Many isotopic observables at low density
- Work towards expansing isotopic observables to the high-density asy-EOS
 - Ratios
 - Correlations
- Constraining theory: effective masses
- Equipment for the high-density asy-EOS