

Evolution of Microwave Discharge Ion Sources

Luigi Celona

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud Via S. Sofia 64 – 95123 Catania Italy

<u>celona@Ins.infn.it</u>

Università La Sapienza – Dottorato in Fisica degli acceleratori – Particle and Ion sources L. Celona, Microwave Discharge Ion Sources

Applications based on intense proton beams

- ADS for nuclear waste transmutation (and Energy production)
- Radioactive ion beams
- Intense neutron spallation sources
- Radiation processing
- Neutrino factory

- Power range: 100 KW÷10 MW
- Energy range: 100 MeV ÷2 GeV
- Average current: 100 μA ÷30 mA
- Pulsed or CW

Proton driver	Energy (GeV)	Beam power (MW)
ADS: XADS Ind. burner	~ 0.6 ~ 1	~ 5 ~ 50
Spall. neutron source (ESS)	1.33	5
Irradiation facility	~ 1	>10
Neutrino factory (CERN)	2.2	4
RIB: "one stage"	~ 0.2	~ 0.1
"two stages"	~ 1	~ 5-10

		keV	mA	ms	Hz	π mm.
						mad
LEDA	р	75	100	CW	CW	0.25
IPHI	р	95	100	CW	CW	0.2
TRASCO	р	80	35	CW	CW	0.2
FAIR	р	95	100	1	4	0.3
ESS	р	75	60/90	2.84	14	0.25
IFMIF	D^+	100	2×125	CW /1	1-20	0.2
MYRRHA	р	100	4	CW	CW	
DAESALUS	${\rm H_{2}^{+}}$	65	40			0.3
SPL	H-		80	2.8	50	0.2
SNS	H-	65	50	1	60	0.2
JKJ	H-		30	0.5	50	0.25
ADSS	H-		25	0.5	25	

High reliability and high parameters' reproducibility is requested (i.e. operator-indipendent)

Basic principles

HYPOTHESIS: ABSENCE OF MAGENTIC FIELD, PLANE AND MONOCROMATIC WAVE $E = E_0 e^{i(kz - \omega t)}$ For propagation into the plasma must be: k>0 $k^2 \approx \frac{\omega^2}{c_0^2} \left(1 - \frac{\omega_{pe}^2}{\omega^2}\right) = \frac{\omega^2 - \omega_{pe}^2}{c_0^2}$ It means: $\omega > \omega_{pe} \longrightarrow \begin{cases} \omega_{pe}^2 = \frac{n_e e^2}{\varepsilon_0 m_e} \\ n_e = \frac{\varepsilon_0 m_e \omega_{pe}^2}{e^2} = 1.2283 \cdot 10^{-2} \cdot f^2 [m^{-3}] \end{cases}$

Upper limit to density: n<n_c

The introduction of a magnetic field opens different coupling mechanism:

• ELECTRON CYCLOTRON RESONANCE (ECR)

B-min magnetic configuration – ECR heating occurs at $B_{ECR} = \frac{m_e \omega}{e}$ RHCP wave strongly coupled • OFF RESONANCE HEATING Energy absorbed by off resonance heating process Energy absorbed by absorbed

Pioneeristic work

POPPORt. Inc. 1048-1118

Later on, Okada and others in Japan and elsewhere produced tens of mA of B⁺, As⁺, P⁺ and other monocharged ions, but Sakudo is recognized to be the pioneer.

First Ion Implanter

1. State

Breakthrough simple design

All successful sources are based on it

Discharge RF Power	800W @ 2.45 GHz
Total beam current	96 mA
Proton fraction	86 %
Proton beam	82.5 mA
Beam energy	50 keV
Beam emittance (rms norm.)	0.23 π mm mrad
Hydrogen mass flow	≈2 sccm

Plauna Chamber

Main troubles:

- Losses in extraction
- Source reliability
- Emittance too high
- Current still not at the values needed

Los Alamos source for LEDA

- Beam currents measured at DC1, DC2, and in the RFQ entrance collimator for 6.7 MeV RFQ.
- Beam focusing accomplished with LEBT solenoid magnets S1 and S2.
- Beam centroid controlled with steering magnets SM1 and SM2.

Injector Parameter	Value
H ₂ gas flow (sccm)	4.1
Ion source pressure (mTorr)	2
Ion source gas efficiency (%)	24
Discharge power, 2.45 GHz (kW)	1.2
Beam energy (keV)	75
High voltage power supply current (mA)	165
DC1 current (mA)	154
DC2 current (mA)	120
Proton fraction (%)	90
Injector emittance (π mm-mrad) (1rms norm)	0.18

Main troubles:

Losses in extraction

- Source reliability
- Emittance too high
- Current still not at the values needed.
- Remote control «infant mortality...»

SILHI source and LEBT

Since 1996, SILHI produces H+ beams with good characteristics:

H+ Intensity > 100 mA at 95 keV H+ fraction > 80 % Beam noise < 2% 95 % < Reliability < 99.9 % Emittance < 0.2 π mm.mrad CW or pulsed mode

iii 25 m.A

In CW mode, the source routinely produces **130 mA** total (> 80% H⁺) at 95keV

	Particles	PROTOX		DECTEMON	
	Patientedana	Requests	Matter	Require	Mattas
	Emitgy [ka's]	- 95	90	- 98	100
	Intermediate Electrode [kV]	55	36		50
	Proton , Deutonon Concent [m.A]	500	100	140	129
	Total Currant [mA] (I max)	110	130 (197)	195	135-(166)
The summer of th	Proton, Destaron Fraction [%]		83	2.90	96
	Plasma electrode diameter [mmi]	1.1.12.111	9.	1 A.	2
	Current Density [m.5 cm ²]	340	204	243	212
	Availability [%]	ABIAP	- > 99	AHAP	1 A
	EF Forward Pewer (W)	= 1200	850	- 1200	900
	Duty Eactor (%)	100	100	100	0.2*
	II11 Dy Cass Flow [score]	< 10	5	1.10	
	Beam Noise mm. [%]	2	12	2	12

(based leaded)

INFN-CEA campaign aimed to minimize emittance

 p_1 =1.8·10⁻⁵ T, p_2 = 1.2·10⁻⁵ T \Rightarrow $\underline{\epsilon_{RMS}}$ =0.291 π mm mrad

1000

Emittance plot (99%) without injecting gas in the beam line: Emittance plot (99%) injecting 84Kr in the beam line:

 $p=1.8 \cdot 10^{-5} T \Longrightarrow \underline{\mathbf{\mathcal{E}}_{RMS}} = 0.335 \pi \text{ mm mrad}$

Emittance plot (99%) injecting 84Kr in the beam line:

 $p=3.0\cdot10^{-5} T \Longrightarrow \underline{\boldsymbol{\mathcal{E}}_{RMS}}=0.116 \pi \text{ mm mrad}$

INFRace charge compensation with Ar

Emittance plot (99%) without injecting gas in the beam line: $p_1=1.8\cdot10^{-5}$ T, $p_2=1.2\cdot10^{-5}$ T $\Rightarrow \underline{\epsilon}_{RMS}=0.291 \pi \text{ mm mrad}$

Emittance plot (99%) injecting Ar in the beam line: $p_1=4.5\cdot10^{-5}$ T, $p_2=4.4\cdot10^{-5}$ T \Rightarrow <u> $\mathcal{E}_{RMS}=0.124 \ \pi \ mm \ mrad}$ </u>

Emittance plot (99%) without injecting gas in the beam line: $p_1=1.6\cdot10^{-5}$ T, $p_2=1.2\cdot10^{-5}$ T $\Rightarrow \underline{\mathcal{E}}_{RMS}=0.386 \pi$ mm mrad Emittance plot injecting N2 in the beam line: $p_1=4.5\cdot10^{-5}$ T, $p_2=4.5\cdot10^{-5}$ T $\Rightarrow \underline{\epsilon}_{RMS}=0.13 \pi \text{ mm mrad}$

and the set

INFRace charge compensation with H2

Emittance plot (99%) without injecting gas in the beam line: $p_1=1.6\cdot10^{-5}$ T, $p_2=1.2\cdot10^{-5}$ T $\Rightarrow \underline{\mathcal{E}}_{RMS}=0.292 \pi \text{ mm mrad}$

Emittance plot (99%) injecting H2 in the beam line: $p_1=5\cdot10^{-5}$ T, $p_2=4.9\cdot10^{-5}$ T $\Rightarrow \underline{\mathcal{E}_{RMS}}=0.198 \pi \text{ mm mrad}$

• In all the cases considered, a decrease of beam emittance has been observed with the increase of beam line pressure.

• Using ⁸⁴Kr gas addition a decrease of a factor three in beam emittance has been achieved losing less than 5% of the beam current with a small increase of pressure (from 1.8E-5 Torr to 2.4E-5 Torr).

P-Y. Beaubais, R. Gobin, R. Ferdinand, L.Celona, G. Ciavola, S. Gammino, J. Sherman, Rev.Sci.Instr. 71(3), (2000), 1413

Investigation gave some ideas how to solve these issues Main troubles: Laccac in avtracti • Source reliability • Emittance too high Current still not at the values needed

Remote control «infant mortality...»

TRIPS (TRasco Intense Proton Source)

Proton beam current: 35 mA dc Beam Energy: 80 keV Beam emittance: $\varepsilon_{RMS} \leq 0.2 \pi$ mm mrad Reliability: close to 100%

Based on CRNL-LANL-CEA design MANY INNOVATIONS

TRIPS operating parameters

	Requirement	Status
Beam energy	80 keV	80 keV
Proton current	35 mA	55 mA
Proton fraction	>70%	≈90% (estimated)
RF power, Frequency	2 kW (max) @2.45 GHz	Up to 1 kW @ 2.45 GHz
Axial magnetic field	875-1000 G	875-1000 G
Duty factor	100% (dc)	100% (dc)
Extraction aperture	8 mm	6 mm
Reliability	≈100%	99.8% @ 35mA (over 142 h)
Beam emittance at RFQ entrance	$\leq 0.2 \pi$ mmmrad	0.07πmmrad @ 32 mA

TRIPS (TRasco Intense Proton Source)

Extraction electrodes

TRIPS mounting procedure: from the grounded flange to the 100 kV flange.

Università La Sapienza – Dottorato in Fisica degli acceleratori – Particle and Ion sources L. Celona, Microwave Discharge Ion Sources

A layout of the whole set-up at INFN-LNS:

1- Demineralizer; 2- 120 kV insulating transformer; 3- 19" Rack for the power supplies and for the remote control system; 4- Magnetron and circulator; 5- Directional coupler; 6 – Automatic Tuning Unit; 7- Gas Box; 8- DCCT 1;

9- Solenoid; 10- Turbomolecular pump; 11- DCCT 2; 12- Quartz tube; 13- Beam stop.

Microwave injection and beam extraction optimisation

 E_0

Microwave Injection

Use of a step binomial matching transformer with a enhancement field factor $(E_{s4}/E_0) \approx 1.95$ (a₂=0.0126 m)

Beam extraction

 a_2

The extraction process has been deeply studied with the aim to increase the source reliability and to keep emittance low. The used codes were AXCEL-INP and IGUN.

 E_{s2}

*Es*1

 $E_{s\underline{3}}$

PLASMA

IMPEDANCE

 $> Z_{\varsigma}$

L.Celona, G. Ciavola, S. Gammino, R. Gobin, R. Ferdinand, Rev.Sci.Instr. 71(2),(2000), 771

Università La Sapienza – Dottorato in Fisica degli acceleratori – Particle and Ion sources L. Celona, Microwave Discharge Ion Sources

Università La Sapienza – Dottorato in Fisica degli acceleratori – Particle and Ion sources L. Celona, Microwave Discharge Ion Sources

20.00

19.8 11.0 100 1.10 4.44 22 10.00 10.00 10.00 1.10 100.00 See. **11**

The measured value is slightly above the theoretical value and in good agreement with the AXCEL calculation.

L. Celona, Microwave Discharge Ion Sources
INFNRIPS reliability test: 35 mA @ 80 kV

IPS performance vs. forward power

Operating voltage = 80 kV Optimized magnetic field profile Electron donor= BN disks Mass flow= 0.6 sccm Extraction aperture = 6 mm **Current density up to 210 mA/cm²** (close to J_{child})

Typical densities and temperatures of MDIS plasmas

Investigation gave some ideas how to solve these issues

Better comprehension of phenomena, solutions found

- •New extraction system and accelerator column simplified to reduce the dimensions.
- •New ionisation chamber.

•Insulation of coils, microwave and gas system to eliminate the HV-platform (implies a further simplification of the electronics involved in the control of the source because all the instrumentation will be placed at ground potential).

NEW MAGNETIC SYSTEM

- Based on three rings of NdFeB permanent magnets
- The ARMCO iron components lower the off axis magnetic stray field values, detrimentals for the reliability, by keeping high the field inside the plasma chamber
- Very good matching between the measurements and the numerical simulation carried out with the OPERA code

ION EXTRACTION SYSTEM

YOU ARE NOT OBLIGED TO DESIGN COMPLEX SYSTEM

VIS DESCRIPTION

VIS BEAM LINE DESCRIPTION

MICROWAVE LINE 1/3

BN Disk

Water-cooled Bend Water- cooled copper plasma chamber

Microwave pressure window Placed behind the bend in order to avoid any damage due to the backstreaming electrons

DC- Break
Low microwave losses
Good voltage insulation up to 100 kV

It is used to measure the forward and the reflected power

Tuning Unit

Dual-arm Directional It realizes a progressive match between the waveguide impedance and the plasma chamber impedance, thus concentrating the electric field at the center of the plasma chamber

Matching Transformer

Adjusts the modulus/phase of the incoming wave to match the plasma impedance

Excytes the TE₁₀ dominant mode in WR340 waveguide

MW LINE 2/3: MATCHING TRANSFORMER

MW LINE 3/3 WAVEGUIDE DC-BREAK

DESCRIPTION

It consists of 31 aluminum sections of a WR340 waveguide insulated one each other by means of 30 fiberglass disks 0.5 mm thick in the metal separation gap

PERFORMANCES

- Electrical Insulation up to 100 kV
- Transmission coefficient -1.4 dB @ 2.45 GHz
- Low radiated electromagnetic field

ELECTROMAGNETIC

POWER

FIELD @ 2.45 GHz 500 W

ION EXTRACTION SYSTEM

The extraction geometry employ only four will electrodes. Α plasma electrode at 80 kV voltage, water-cooled two electrodes grounded screening electrode and a 3.5 kV negatively biased electrode inserted the between two grounded electrodes order to in avoid secondary electrons due to residual gas ionisation

going up to the extraction area.

• on-line optimisation of the

extracted beam

TRIPS Five-electrodes topology

• wide range of operations (10-60

VIS Four-electrodes topology optimized for a 40 mA beam (90% proton, $10\% H_2^+$)

The rms normalized emittance calculated with Axcel code, 11 cm far from the extraction electrode is 0.04 π mm mrad.

Investigation gave some ideas how to solve these issues

Better comprehension of phenomena, solutions found

Journey to deliver the world's leading facility for research using

neutrons

Proton source and LEBT: Ready For Installation 03/11/2017

2014 Construction work starts on the site

2009 Decision: ESS will be built in Lund

First European design effort of ESS completed

2003

2012 ESS Design Update phase complete ESS starts user program 2.57

ESS construction

complete

2023

2025

2019 First beam on Target

Ion Source and LEBT

INFN-LNS background

TRIPS (2001)

VIS (2008)

PS-ESS (2016)

			Requirement	Value
Performance	Value	+ 25%	Beam energy	75 ± 5 keV
Beam energy	80 Kev	+ 25%	Energy adjustment	± 0.01 keV
Proton beam current	55 mA		Total beam current	> 90 mA
Proton fraction	≈80%		Proton beam current	74 mA
RF frequency	2.45 GHz		Proton beam current range	6.7 - 74 mA
RF power	Up to 1 kW		Resolution	1.6 mA
Axial magnetic field	875-1000 G	from dc to pulsed	Proton fraction	> 75%
Duty factor	100 % (DC)		Pulse length	6 ms
Extraction aperture	6 mm	High at 1	Pulse flat top	3 ms
Reliability	99.8% @ 35 mA	- stability	Repetition rate	14 Hz
Transverse emittance (σ)	ttance (σ) 0.07 pi.mm.mrad Low		Pulse to pulse stability	± 3.5 %
	@ 35 mA		Flat top stability	± 2 %
Start-up after maintenance	32 hours		Transverse emittance (99%)	1.8 pi.mm.mrad
			Beam divergence (99%)	< 80 mrad
	Easy n	Start-up after maintenance	< 32 hours	

Proton Source and LEBT at INFN-LNS

Plasma modeling

Electron Energy Distribution Function

Ion formation

Generation maps

L. Neri et al. "Recent progress in plasma modelling at INFN-LNS", Rev. Sci. Instrum. 2016 Feb, 87(2):02(A)505

Microwave to plasma coupling

3D full wave e-m simulation in presence of the electron plasma density and strong magnetic field has driven the design of **the matching transformer** Empty cavity

Cold tensor plasma approximation

G. Torrisi et al. "Full-wave FEM simulations of electromagnetic waves in strongly magnetized non-homogeneous plasma", JEWA 2014 vol. 20, no. 9, 1085-1099

G. Torrisi et al. "Microwave injection and coupling optimization in ECR and MDIS ion sources", Proc. of IPAC'17

Beam extraction system

Axcel 2D beam input parameters:

Some simulation parameters: Mesh = 1096 x 1424 Ip = 10 N°particles = 21920 kTe = 15 eV kTi = 0.25 eV pot. Plasma = 20 V I tot = 0.0925 A I protoni = 0.074 A I H2 = 0.0185 A

To increase flexibility an interchangeable geometry was designed and different type of electrodes were manufactured Simulations to optimized for larger current and minimize beam emittance

Emit [99%]=1.492 (< 1.8) Pi.mm.mrad [Norm] Max Divergence= 55 (< 80) mrad

Extraction column design

- Minimization off-axis electric field
- Electric field mimimazion at triple point (< 6.4 kV/cm)
- X Ray protection
- Single alumina to minimize the electric field on the external surface (< 6.6 kV/cm)

State-of-art sparks immunity during beam operation at 75 kV. Extraction column tested up to 90 kV.

Increase electronics strength against discharge

Wide use of optical fibers

Grounding grid

FC voltage protection

Shielded sub-rack at ground

Magnetic system control interface IN

Very high magnetic flexibility required a dedicated interface developed at INFN that enable direct control and high reproducibility

Watt	sccM	Time lef Configura left	Coil 1	Coil 2	Coil 3		22
	10 4.58. 40 4.05 40 4.05	A THE EXAMPLE (0. KDN EXPTUDE (0. KDN 4010/110 (0. KDN 4010/110 (0. KDN 4010/110 (0. KDN 4010/110	PR 600.4 CR 527.4 CR 527.4 CR 548.2	100-1 -31-1 48-3 131-9	201-4 123-4 365 365-7		
	To Are		122 12	1.12		A CONTRACT OF CONT	STATISTICS.
SI 1052	20122 122	-31 -35	102	Pla	asma mode	lling 🗲	

From the 23/01/2017 the source is extracting beam seamless, more than 300⁻000 tested configurations, no stops due to sparks.

 parameters range to be tested:

 Field @ 0 mm ==> 835:20:975 Gauss

 Field @ 35 mm ==> 795:40:1395 Gauss

 Field @ 84 mm ==> 675:40:1995 Gauss

 H2 flow ==> 2:1:5 SCCM

 RF power ==> 600:200:1200 Watt

 40192 configurations

Commissioning setup phases 1 and 2

Extraction

Faraday Cup Emittance Measurement Unit Doppler Shift Measurement Unit

Semi-automatic characterization

In the graphical interface: average, maximum and minimum are evaluated and the trend showed for the beam pulse between 2.9 ms and 5.9 ms.

In the semi-automatic characterization code 26 parameters and two wave forms (@1Ms/s) are saved for each pulse produced at nominal repletion rate of 14Hz.

Data analysis of thousands of different configurations

Fraction of beam current collected the Faraday Cup

Courtesy of O. Midttun (University of Bergen)

Increasing the plasma density increase the meniscus concavity and the divergence of the extracted beam.

Simulation done with IBSimu shows good agreement with experimental data.

Data analysis of thousands of different configurations

Doppler shift measurement bean characterization

ESS stable configurations versus injected H₂ gas flux and microwave power

Total current = 100 mA SATISFIED

Increasing the injected microwave power increase the energy transfer and consequently the plasma density

Each point is a large operative range (20 Gauss x 40 Gauss x 40 Gauss x 1 SCCM x 200 Watt)

Lower current (2-5 sccm)

High current (2-4 sccm)

ESS nominal configuration

109 A coil1; 67 A coil2; 228 A coil3; 3 SCCM

Chopping performaces

Rise time: 430ns

Fall time: 519 ns

Beam pulse shape measured with the ACCT located at the end of the LEBT

Beam emittance at the center of the LEBT

A parallel beam is obtained between the two solenoids Emittance (99%): 1.43 π .mm.mrad

Transverse emittance SATISFIED Emit [rms] < 0.25 Pi.mm.mrad Emit [99%] < 2.25 Pi.mm.mrad Emittance measured after 100 mm of the RFQ beam lattice interface.

Back tracing simulation under going to evaluate twiss parameters at LEBT-RFQ beam lattice interface

Site Acceptance Review

	Name
Anthers	Oystein Midtten
	Loronzo Nori
	Cyrille Thomas

- Requirement achieved
- Requirement not achieved

 Requirement not possible to verify because of reduced commissioning time or missing beam instrumentation

ION SOURCE PERFORMANCE AT THE END OF COMMENSIONING PHASE 2

Requirement	Value	Status
Nominal beam current	74 mA	12
Maximum beam current	> 90 mA	10
Proton beam current range	67 - 74 mA	8
Proton fraction	> 75 %	82
Pulse length	6 ress	58
Flat top stability	±2.%	8
Pulse to pulse stability	\$ 3.5 %	121
Beam energy	75 keV	8
Beam energy fluctuation	± 0.01 keV	52
Transverse emittance (99%)	1.8 n.mm.mrad	
Start-up after maintenance	< 32 bours	68

50N SOURCE AND LEBT PERFORMANCE AT THE END-OF COMMISSIONING PRASE 4

Requirement	Value	Status
Nominal beam current	70 mA	68
Transmission	> 95 %	81
Beam current range	6 - 70 mA	8
Beam current precision	1 mA	60
Vacuum pressure	< 6e-5 mbar	68
Beam pulse flat-top length	0.05 - 2.86 ms	•
Beam pulse rise/fall time	< 1 µs	1
Transverse emittance (99%)	1.25 n.mm.mrad	61
Twiss parameter a	1.02 ± 20 %	
Twiss parameter B	1.02 ± 20 %	

Main troubles

Losses in extraction

Current still not at the values needed

Remote control «infant mortality...» **^**

ESS final integration

Time line

OES cone of view intercepts the plasma extraction region;

The OES experimental set-up

OES Theoretical and experimental approach

The comparison between theoretical and experimental line ratio permits to evaluate the plasma parameters

 $\begin{array}{ccc} H_{\alpha}/H_{\beta}, H_{\beta}/H_{\gamma} \longrightarrow & \mathsf{T}_{e}, \mathsf{n}_{e} \\ H_{\gamma}/\int F. band \longrightarrow & \mathsf{n}(\mathsf{H})/\mathsf{n}(\mathsf{H}_{2}) \end{array}$

Collisional Radiative (CR) model rate equations for each state of the particle together with the coupling to other particles CR models from Yacora developed by Max

Plank institute (https://www.yacora.de)

D. Wünderlich and U. Fantz, Atoms 4, 2016, 26

Results: the electron density

- Electron density overcomes density cut-off at 2.45 GHz (n_{cut-off}: 8.75[.]10¹⁶ m⁻³);
- Density saturates above 400 W at 0.9-1 10¹⁸ m⁻³ -10 times overdense plasma generated;

Results: the electron temperature

- Electron temperature is in the range 5-15 eV;
- Temperature slightly decreases with power: Decrease of electron mean free path? Coupling between electron and ion populations at higher density?
- Similar trend measured by LP by other authors

(P. Roychowdhury, and D. P. Chakravarthy, Rev. Scie. Instrum. 80, 123305, 2009)

LP measurements in similar conditions

The atomic to molecular neutral relative abundances

• The $n(H)/n(H_2)$ ratio increases from 0.5 to around 2;

• Knowledge of $n(H)/n(H_2)$ enables the n(H) and $n(H_2)$ evaluation:

• Neutral pressure is measured in the LEBT and then evaluated in plasma chamber by Comsol simulation.

$$P_{tot} = \sum_{i} N_{i} k T_{neutral} \longrightarrow n(H),$$

n(H₂)

Is it possible to evaluate proton fraction or H_2^+ fraction from this information?

O-dimensional model

Volume-averaged model looking for averaged value of plasma parameters

- 1. Elementary **atomic and molecular collision processes**, (excitation/radiation, ionization, dissociation, recombination, etc);
- 2. Particle losses and recycling at walls;
- 3. Active pumping and gas injection;
- 4. RF heating of electrons;

Main processes and relative cross sections in a hydrogen plasma

XXIV AIV Conference - Giardini Naxos - May 8, 2019

XXIV AIV Conference - Giardini Naxos - May 8, 2019

XXIV AIV Conference – Giardini Naxos - May 8, 2019

- **Evaluation of extracted current: hypothesis**
 - 1. Ions moves along a flux tube parallel to the magnetic field ($D_{\parallel} \gg D_{\perp}$) having radius equal to the extraction hole r;
 - 2. All ions who reach plasma meniscus are extracted;
 - 3. Ions enter the extraction region with Bohm velocity $V_{B}: \sqrt{\frac{kT_{e}}{M}}$

4. $\int f(+v_z) = \int f(-v_z)$ just 1/2 of the ions move towards the extracton hole;

XXIV AIV Conference – Giardini Naxos - May 8, 2019

Evaluation of extracted current: results

• The semiempirical model is able to give a rough prediction of the extracted current measured by ACCT;

$$I_{extr.} \sim \frac{1}{2} \pi r^2 \sqrt{\frac{kT_e}{M}} n_e$$

- Also in this case, OES could be used as a monitor of proton source performances;
- Further measurements are needed to validate the model in CW and in HV conditions

XXIV AIV Conference – Giardini Naxos - May 8, 2019

