

FRED electromagnetic model

What we have implemented:

Photons → Photoelectric effect;

Compton scatter (+ doppler broading);

Pair production;

Coherent scattering;

Fluorescence event.

Electrons and positrons→ Bremsstrahlung;

Positron annihilation (+ doppler broading); Multiple scattering.

What we have to implement:

Delta rays;

Electron back-scattering.

FRED electromagnetic model

What we have implemented:

Check of the model via FRED-FLUKA comparison

Photons → Photoelectric effect;

Compton scatter (+ doppler broading);

Pair production;

Coherent scattering;

Fluorescence event.

Electrons and positrons→ Bremsstrahlung;

Positron annihilation (+ doppler broading); Multiple scattering.

What we have to implement:

Delta rays;

Electron back-scattering.

Photon transport validation - 500keV

To validate the photon transport I simulated 3*106 photons impinging on a water target of [4x4x0.1] cm³ at different energies.

Kinetic energy of the outgoing photons with pz<0

Angle of the outgoing photons with pz<0

Photon transport validation - 500keV

Kinetic energy of the outgoing photons with pz<0

Angle of the outgoing photons with pz<0

Photon transport validation - 500keV

Electrons produced inside the target -> at 500 keV the dominant process is the Compton scatter

Kinetic energy of the outgoing electrons with pz<0

Photon transport validation - 1 MeV

To validate the photon transport I simulated 10⁶ photons impinging on a water target of [4x4x0.1] cm³ at different energies.

Kinetic energy of the outgoing photons with pz<0

Angle of the outgoing photons with pz<0

 $\vartheta[^{\circ}]$

Photon transport validation - 1 MeV

Kinetic energy of the outgoing photons with pz<0

Angle of the outgoing photons with pz<0

Photon transport validation - 1 MeV

Electrons produced inside the target -> at 500 keV the dominant process is the Compton scatter

Kinetic energy of the outgoing electrons with pz<0

Photon transport validation - 10 MeV

To validate the photon transport I simulated 10⁶ photons impinging on a water target of [4x4x0.1] cm³ at different energies.

Kinetic energy of the outgoing photons with pz<0

Photon transport validation - 10 MeV

Kinetic energy of the outgoing photons with pz<0

Angle of the outgoing photons with pz<0

Photon transport validation - 10 MeV

Electrons produced inside the target -> at 500 keV the dominant process is the Pair production

Kinetic energy of the outgoing electrons with pz<0

Photon dose

Target [50x50x50] cm³

FRED → sum: 5.134594e-14 Gy FLUKA → sum: 5.1326533e-14Gy

 $\delta = 0.038 \%$

Target [50x50x100] cm³

FRED → sum: 5.5958564e-14 Gy FLUKA → sum: 5.6091355e-14Gy

 $\delta = 0.23 \%$

Photon dose

To validate the photon transport I simulated 106 electrons impinging on a water target of [4x4x0.025] cm³ at different energies.

 $p_z > 0$

Kinetic energy of the outgoing electrons with pz>0

To validate the photon transport I simulated 10⁶ electron [4x4x0.025] cm³ at different energies.

Kinetic energy of the outgoing electrons with pz>0

No electrons back scattering implementation E ($p_z < 0$), $\vartheta(p_z < 0)$ missing

et of

Kinetic energy of the outgoing photons with pz>0

Angle of the outgoing photons with pz>0

Kinetic energy of the outgoing photons with pz>0

Angle of the outgoing photons with pz>0

Electron transport validation

To validate the photon transport I simulated 10⁶ electrons impinging on a water target of [4x4x0.025] cm³ at different energies.

Kinetic energy of the outgoing electrons with pz>0

Kinetic energy of the outgoing photons with pz>0

Angle of the outgoing photons with pz>0

Kinetic energy of the outgoing photons with pz>0

Angle of the outgoing photons with pz>0

To validate the photon transport I simulated 10⁶ electrons impinging on a water target of [4x4x0.025] cm³ at different energies.

22

Kinetic energy of the outgoing electrons with pz>0

Kinetic energy of the outgoing photons with pz>0

Angle of the outgoing photons with pz>0

Electron dose

Target [50x50x0.25] cm³

FRED → sum: 3.1939523e-11 Gy

FLUKA → **sum:** 3.1277969e-12**G**y

 δ = 2.11 %

Target [50x50x0.5] cm³

FRED → sum: 6.383595e-12 Gy

FLUKA → **sum: 6.2835021e-12Gy**

$$\delta$$
 = 1.6 %

Electron dose

Spare slide

Electron transport validation

Kinetic energy of the outgoing electrons with pz>0

Electron transport validation

