Electroweak skyrmions through the Higgs

Juan Carlos Criado

The Emergence of Electroweak Skyrmions through Higgs Bosons

Juan Carlos Criado, Valentin V. Khoze, Michael Spannowsky

2012.07694

- theory
- numerical calculation
- pheno

Skyrme (1961) Witten (1979) Adkins, Nappi, Witten (1983)

SU(2) matrix $U = e^{i\pi^a \tau^a/f_\pi}$

Non-trivial static and stable field configurations

Solitons in
$$\mathcal{L} = \mathcal{L}_{\partial^2} + \mathcal{L}_{\partial^4} + \dots$$
?

Derrick's theorem:

$$\mathcal{L}_{\partial^2} \sim {\sf tr} \left(\partial_\mu U^\dagger \partial^\mu U
ight) \implies$$
 no solitons

Skyrme term:

$$\mathcal{L}_{\partial^4} \sim \mathsf{tr} \left[U^\dagger \partial_\mu U, U^\dagger \partial_
u U
ight]^2$$

Topology

Static solutions with U = constant at spatial infinity:

$$U: \mathbb{R}^3 \cup \{\infty\} \cong S^3 \to S^3$$

Homotopy class characterized by the winding number

$$n_U = \epsilon_{ijk} \int d^3 x \ U^{\dagger} \partial_i U \ U^{\dagger} \partial_j U \ U^{\dagger} \partial_k U \in \mathbb{Z}$$

For $S^1 \to S^1$:

Global SU(2) skyrmion

$$\mathcal{L} = -\frac{f_{\pi}^2}{16} \operatorname{tr} \left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \right) + \frac{1}{32e^2} \operatorname{tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2$$

- Skyrmion: Topologically protected local minimum of the static-field configuration energy with $n_U = 1$.
- **Vacuum**: $n_U = 0$
- Antiskyrmion: $n_U = -1$
- Multiskyrmions: $|n_U| > 1$

Ambjorn, Rubakov (1985)

$$\begin{split} \mathcal{L} &= \frac{1}{2g^2} \operatorname{tr} \left(W_{\mu\nu} W^{\mu\nu} \right) - \frac{f_{\pi}^2}{16} \operatorname{tr} \left(D_{\mu} U^{\dagger} D^{\mu} U \right) \\ &+ \frac{1}{32e^2} \operatorname{tr} \left[U^{\dagger} D_{\mu} U, U^{\dagger} D_{\nu} U \right]^2 \end{split}$$

- local minimum still exits for $e < e_{crit}$
- no longer topologically protected

Introducing the Higgs field

$$\Phi = \begin{pmatrix} \phi_0^* & \phi_1 \\ -\phi_1^* & \phi_0 \end{pmatrix} = sU$$

Lowest-dim. embedding of the Skyrme term in the SMEFT:

$$\mathcal{O}_{\mathsf{Sk}} = rac{1}{8} \operatorname{tr} \left[D_{\mu} \Phi^{\dagger}, D_{\nu} \Phi
ight]^{2}, \qquad \mathcal{L} = \mathcal{L}_{\mathsf{SM}} + rac{1}{\Lambda^{4}} \mathcal{O}_{\mathsf{Sk}}$$

Numerical calculation

Unitary gauge

$$\phi(x) = \frac{v\sigma(r)}{\sqrt{2}} \begin{pmatrix} 0\\1 \end{pmatrix}$$

Spherical ansatz:

$$W_i = \frac{\Lambda^2}{v} \tau_a \left(\epsilon_{ija} n_j \frac{f_1(r)}{r} + (\delta_{ia} - n_i n_a) \frac{f_2(r)}{r} + n_i n_a \frac{b(r)}{r} \right)$$

Method: neural net

$$(f_1(r), f_2(r), b(r), \sigma(r)) = \sum_{i=1}^{30} \left[\mathbf{b}_i^{(2)} + \frac{\mathbf{w}_i^{(2)}}{1 + \exp\left(-b_i^{(1)} - w_i^{(1)}r\right)} \right],$$

9

Minimize the loss function:

$$L[f_1, f_2, b, \sigma] = E[f_1, f_2, b, \sigma] + \omega_{BC} \sum_k BC_k[f_1, f_2, b, \sigma]^2 + \omega_n (n_W[f_1, f_2, b, \sigma] - n_W)^2$$

over all values of the neural net parameters.

The weigths ω_i are adjusted to $\sim 10^{4-5}$ so that

(min. L) \implies (min. E while satisfying BC and n_W = fixed value)

Results: profile functions

Results: energy vs n_W

Results: critical mass

$$E = \frac{4\pi v^3}{\Lambda^2} E_{\rm nat}$$

For large Λ :

$$M_{
m Sk}\simeq E_{
m nat}(n_W=1)rac{4\pi v^3}{\Lambda^2}\simeq 0.35rac{4\pi v^3}{\Lambda^2}$$

Below $\Lambda_{crit}\simeq 100\,\text{GeV},$ the skyrmion disappears, thus

$$\Lambda > \Lambda_{
m crit} \implies M_{
m Sk} \lesssim 10 \, {
m TeV}.$$

Results: mass vs Λ

$$R_{\rm Sk}^2 = \left(\frac{v}{\Lambda^2}\right)^2 \left\langle r^2 \right\rangle = \left(\frac{v}{\Lambda^2}\right)^2 \frac{1}{24\pi^2} \int d^3x \, r^2 \,\epsilon_{ijk} \,\mathrm{tr}\left(iW_i W_j W_k\right)$$

$$R_{
m Sk} \simeq 0.6 rac{V}{\Lambda^2}$$

Phenomenology

Similar to instantons, exponentially suppressed.

Probing \mathcal{O}_{Sk} at colliders: processes

Probing \mathcal{O}_{Sk} at colliders: cross section and Λ

$$\sigma = (2.70 \text{ pb}) \left(\frac{\sqrt{s}}{14 \text{ TeV}}\right)^{8.93} \left(\frac{1 \text{ TeV}}{\Lambda}\right)^8,$$

300 events with final state $b\bar{b}b\bar{b}b\bar{b}\gamma\gamma$ at hadron colliders:

$\Lambda < 58\text{GeV}$	for $\sqrt{s} = 14$ TeV, $\int dt L = 300$ fb $^{-1}$,
$\Lambda < 77 \text{GeV}$	for $\sqrt{s} = 14 { m TeV}, \int dt L = 3000 { m fb}^{-1},$
$\Lambda < 320{ m GeV}$	for $\sqrt{s} = 50 \mathrm{TeV}, \int dt L = 3000 \mathrm{fb}^{-1},$
$\Lambda < 690{ m GeV}$	for $\sqrt{s}=100{ m TeV},\int dtL=3000{ m fb}^{-1}$

10 events with final state $b\bar{b}b\bar{b}b\bar{b}\gamma\gamma$ at a muon collider:

 $\Lambda < 650 \text{ GeV}$ for $\sqrt{s} = 14 \text{ TeV}$, $\int dt L = 3000 \text{ fb}^{-1}$.

skyrmions are long-lived

- Neural nets for variational problems
- Skyrmions still present with gauge and Higgs fields
- $M_{\rm Sk} \sim 1/\Lambda^2$
- $\bullet \ \Lambda > \Lambda_{crit} \simeq 100 \, {\rm GeV} \implies {\it M}_{\rm Sk} \lesssim 10 \, {\rm TeV}$
- + $\mathcal{O}_{\mathsf{Sk}}$ generated by many UV models
- Skyrmion production unlikely
- $\mathcal{O}_{\mathsf{Sk}}$ may be probed at colliders
- Viable dark matter candidates