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Galaxies

● The observed acceleration is 
discrepant with this 
prediction

Visible mass X Newtonian Gravity = Acceleration

Dark 
matter?

Living Reviews in 
Relativity, 15, 10 (2012)



No direct 
evidence
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Newton gravity

● The circular rotation speed around a mass is given by

● If v ≈ c, relativity becomes important and the theory fails 
(e.g. near black holes)

● What about quantum mechanics?

g =
GM

r2
=
v2

r
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The classical approximation

● Arbitrarily high accuracy in position and velocity 
measurements impossible

● Classical theories assume this is possible

● Curvature (i.e. acceleration) so small in second panel that 
ignoring fluctuations is questionable

≈
≈
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Quantum effects

● Curvature uncertain and not constant, like gravitational 
waves: vacuum carries energy
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Quantum spacetime

● Empty space has small but non-zero minimum energy
● On large scales, this causes the Universe to accelerate 

apart – dark energy (measurable)
● Use dark energy density to estimate when quantum 

effects overwhelm classical (mean) gravitational field

(e.g. Milgrom 1999, Pazy 2013, Verlinde 2016, Smolin 
2017, Bagchi & Fring 2019)

g2

8πG
= ρvac ⇔ g = 9×10−10m /s2



Energy 
density

Classical

ρvac

−g2

8πG

Total?
g2

?
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What if g < 9e-10 m/s2 ?

● Quantum gravity effects should become important (ignoring 
‘roughness’ is a bad idea)

● Classical theories like General Relativity (leading to Newtonian 
dynamics) can’t really be expected to work any more

⇒ Newtonian gravity likely fails, with the discrepancy larger at 
smaller accelerations

⇒ Acceleration (energy density)-dependent discrepancy with 
classical theory may be signature of quantum effects
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Constraints from galaxies

McGaugh, Lelli, Schombert 2016Freese 2008
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MW satellite galaxies lie within a thin 
plane (Pawlowski & Kroupa 2013, 2020). 
Analogous situation for M31 (Ibata+ 2013)

Galaxies observed 
forming within tidal tails 
(Mirabel+ 1992)

Should only contain 
baryons as DM can’t cool 
and form dense tidal tails
(Wetzstein+ 2007)

Internal dynamics can’t be 
explained by Newtonian 
gravity (Kroupa, 2015)

MW and M31 satellite galaxies have high internal 
velocity dispersions, requiring strong self-gravity 
(McGaugh & Wolf, 2010; McGaugh & Milgrom 2013)

Satellites were formed 
from tidal debris. 
Alternatives not very likely 
(Pawlowski+ 2014, and 
references therein)

Local Group 
satellite planes

MW M31

http://adsabs.harvard.edu/abs/2013MNRAS.435.2116P
http://adsabs.harvard.edu/abs/2013Natur.493...62I
http://adsabs.harvard.edu/abs/1992A%26A...256L..19M
http://adsabs.harvard.edu/abs/2007MNRAS.375..805W
http://adsabs.harvard.edu/abs/2015CaJPh..93..169K
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Leibniz Institute for Astrophysics Potsdam (AIP)
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● Leibniz Junior Research Group led by Dr Marcel S. 
Pawlowski (mpawlowski@aip.de) at Potsdam

● “Cosmic Choreographies – Studying Systems of 
Satellite Galaxies and Their Phase-Space 
Correlations”
● 1 postdoctoral position (up to 5 years)
● 2 PhD students

● Application deadline: Thursday, December 31, 2020 
(bewerbung_2020-20@aip.de)

● More information: 

https://jobregister.aas.org/ad/66c4e4a6

mailto:mpawlowski@aip.de
mailto:bewerbung_2020-20@aip.de
https://jobregister.aas.org/ad/66c4e4a6


MOND theory & cosmology15

Milgromian dynamics (MOND)

● Newton gravity/GR developed using Solar System constraints

● Developed by M. Milgrom (1983) to address rotation curves 
without cold dark matter by going beyond Newton

● Lagrangian formalism 

● Milgrom 1983

● Non-linear generalization of the Poisson eqn.:

● external field effect (EFE, Milgrom 1986)

● breaks strong equivalence principle (as observed by Chae+ 2020)

● Milgrom‘s constant (from RAR):

● Asymptotic limits in spherical symmetry:

● Relativistic MOND theory where gravitational waves travel at c 
(Skordis & Zlosnik 2019)
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Dark matter can fit anything

● Unwary astronomers were given a rotation curve & image and asked to fit the curve

● Catch: the image was of the wrong galaxy...

MOND Newtonian gravity + dark matter

The Astrophysical Journal, 508, 
132 – 140 (November 20th, 1998)
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Cosmological MOND framework (ννHDM): overview

● Proposed by Angus 2009 (MNRAS, 394, 527)
● Cold dark matter (CDM) replaced by 

fast collisionless matter (FCM)
● e.g. 11 eV/c2 sterile neutrinos (e.g. Angus+2007)
● same overall mass-energy budget as in ΛCDM

● Standard background cosmology a(t)

→ Nucleosynthesis (BBN)
● e.g. Skordis 2006 (Phys. Rev. D, 74, 103513)

● MOND is applied only to perturbations
● e.g. Nusser 2002, Llinares+ 2008, Angus+ 2013, Katz+ 2013, Candlish 2016

● External field effect from surrounding structures
● consequence of the non-linearity of MOND (e.g. Banik+ 2018, ArXiv1808.10545)

cold dark matter

fast
collisionless 
matter

≈70%

≈25%

≈5%

baryonic matter

dark energy
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νHDM framework: Impact on CMB

● Standard expansion history 

→ same angular diameter distance to CMB
● MOND is sub-dominant at time of recombination 

(z = 1100) because g ≈ 20 a0 

● Free streaming effects negligible if mv > 10 eV/c2

Planck Collaboration XIII (2016), section 6.4.3 
● MOND effects become important only at z < 50

 

Angus & Diaferio (2011)
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Terrestrial evidence for sterile neutrinos

● Sterile neutrinos proposed to explain 
ordinary neutrino oscillations & their non-
zero rest mass (seesaw mechanism)

● Hints of sterile neutrino found by MiniBooNE

(Aguilar-Arevalo et al. 2018, Phys. Rev. Lett. 
121, 221801)

● Must avoid prior limit that mv < 10 eV/c2 as 
terrestrial experiments are so far quite 
compatible with slightly larger mass

Archidiacono et al. 2020 (ArXiv 2006.12885) 

ΛCDM assumed
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Astronomical evidence for fast collisionless matter

Bullet Cluster, credits: NASA/CXC/M. Weiss

● Offset between X-ray and weak lensing 
peaks

● g > a0: MOND effects small

→ Collisionless matter required

● Tremaine-Gunn limit: m
ν
>2 eV/c2 

(Angus+ 2007, ApJ, 654, L13)
● Current constraints imply collisionless 

particle mass >10 eV/c2 (strongest limits 
from CMB)
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νHDM framework can explain: 

● Expansion history a(t) → BBN
● CMB
● Bullet Cluster and 30 virialized clusters (Angus+ 2010, MNRAS, 402, 395)
● Galaxy rotation curves

● unaffected by neutrinos if mν < 100 eV/c2 (Angus+ 2010)

● νHDM solves problems with ΛCDM on galaxy scales  
● plane of satellites with high internal σ around MW (Pawlowski & Kroupa 2020), M31 

(Ibata+ 2013, Sohn+ 2020), Centaurus A (Müller+ 2018)
● ΛCDM explanations rejected (Pawlowski+ 2014, MNRAS, 442, 2362)
● other small scale failures (e.g. Kormendy 2010, Peebles & Nusser 2010, Kroupa 2015, 

Algorry+ 2017)
● Large-scale structure?



The KBC void & Hubble tension in
standard cosmology & Milgromian dynamics

Authors: Moritz Haslbauer, Indranil Banik & Pavel Kroupa

Publication: The KBC void and Hubble tension contradict ΛCDM on a Gpc scale 
– Milgromian dynamics as a possible solution (MNRAS, 499, 2845) 
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The Keenan-Barger-Cowie (KBC) void

δobs≡1−
ρ
ρ0

≈0.46 ±0.06

● A local underdensity is evident across the entire 
electromagnetic spectrum, ranging from radio to X-ray

● Optical: Maddox+1990, Zucca+1997

● Radio: Rubart & Schwarz 2013, Rubart, Bacon & Schwarz 
2014, Secrest+ 2020

● X-ray: Böhringer+2015, Böhringer, Chan, Collins 2020

● NIR: Keenan, Barger, Cowie 2013, ApJ, 775, 62

● 2M++ galaxy catalog with spectroscopic redshift 

● void evident in number counts (luminosity function)

● density about 0.5x cosmic mean between 40 and 300 Mpc over 
90% of the sky

Keenan+ (2013): 2M++ with Ks < 14.36

Credits: Kroupa (2015)

ρ
ρ0
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The KBC void in ΛCDM

Source: Millennium simulation

● Millennium (MXXL) simulation (Angulo+ 2012)
● ΛCDM simulation consistent with WMAP-7 parameters
● biggest suitable simulation (box size of 4.1 Gpc)
● Stellar masses assigned semi-analytically

● Mimic observations (2M++ survey) 
● select subhaloes with M* > 1e10 M⊙/h at z = 0

● calculate luminosity density contrasts over (40 – 300) Mpc 
for 1e6 vantage points

⇒ Expected rms density fluctuations for scale-invariant spectrum: 0.032

   Observed density fluctuation: 0.46±0.06
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The KBC void and Hubble tension in ΛCDM

The KBC void falsifies ΛCDM at 6.04σ

Combined, the KBC void + Hubble tension falsify ΛCDM at 7.09σ

Allowance made 
for redshift space 
distortion (RSD):
Higher local H

Spheres with an inner radius of 40 Mpc 
and an outer radius of 300 Mpc
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Large scale failure of ΛCDM

● The KBC void is physically impossible in a ΛCDM universe

It is impossible to get from the z = 1100 (CMB) to the z < 0.2 (observed 
nearby Universe) boundary conditions
● Problem arises on 300 Mpc scale, so independent of galaxy-scale baryonic physics

⇒ To get from the CMB (z = 1100) to the z = 0 observations, need effectively 
stronger gravity to grow structures faster



MOND theory & cosmology27

AppendixApplying MOND 
to KBC void
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Model assumptions

● Semi-analytical model starting from z = 9
● Initial Maxwell-Boltzmann underdensity profile

● amplitude consistent with CMB

● Standard expansion history & overall mass budget 
(CDM → sterile neutrinos)

● MOND applied only to density perturbations

e.g. Nusser 2002, Llinares+ 2008, Angus+ 2013, Katz+ 2013, Candlish 2016

● External field effect from large scale structure (Milgrom 1986)
● gravity from beyond the void

 ⇒ void as a whole moves

cold dark 
matter

fast
collisionless 
matter

≈70%

≈25%

≈5%

baryonic matter

dark energy
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Growth of structure

 z=0z=9 z=1z=4

Redshift space 
distortion (RSD)
correction 
applied

KBC
void

KBC
void

300 cMpc sphere

At 300 Mpc:
g = 0.1a0

gext = 0.055a0
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Local Hubble diagram

q0
model=1.07

H 0
model=76.15 km / s /MpcH 0

obs ,local=75.35±1.68 km/s /Mpc

q0
obs, local=1.08±0.29

High local H0 and     are explained naturally 
in MOND by outflow from a KBC-like void

q0
local

≡
ä a

ȧ2
(today)

H 0
local

≡
ȧ
a
(today)

q0

q0

q0

q0

q0

q0

● Effects of a local void on cosmological parameters: 

● local expansion rate is increased:

● apparent expansion rate appears to accelerate at late times:

(extra curvature     of Hubble diagram)

● Camarena & Marra 2020a,b jointly derived H0 and     from 
SNe at redshifts 0.023 – 0.15

●      is 2x standard value of 0.55

→ suggestive of a local void

● high local     missed in Kenworthy+ 2019 (     fixed at 0.55)

● hint of dipole in Hubble diagram (Colin+ 2019, Migkas+ 2020)
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Peculiar velocity field

● Only half of the void rms size is shown
● The entire void is moving due to 

gravity from beyond the void
● Partial cancellation between void 

motion and internal velocities 
● Large region with peculiar velocity 

vtot < vLG = 627 km/s (≈0.015 a0)

● Local Group (LG) is off-centered
● LG not at a special position

● High peculiar velocities towards void 
edge consistent with kinematic 
Sunyaev-Zel’dovich effect (Hoscheit & 
Barger 2018, Ding et al. 2020)

(1586 km/s)

vint
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Comparison with ΛCDM & νHDM

Observational constraints Level of 
tension

KBC void (40 – 300 Mpc) 0.99σ

KBC void (600 – 800 Mpc) 0.97σ

H0 and      from SNe data 0.20σ

H0 from 7 strong lens time-delays 2.05σ

Motion of the LG 2.34σ

Combined tension: 2.53σ

νHDM modelΛCDM model

Observational constraints Level of 
tension

KBC void (40 – 300 Mpc, 90% of sky) 6.04σ

H0 (Riess+ 2019 & Wong+ 2020) 5.3σ

3 free parameters (void size & strength, gext)
12 data points

Parameters fixed by CMB

Combined tension: 7.09σ

q0

Recent worsening of H0 tension:
Early: Aiola+ 2020 (ACT)
Late: Pesce+ 2020 (Megamasers)



MOND theory & cosmology33

Outlook: Stellar wide binary (WB) test

● WBs with separation r > 3 kAU (like Proxima Centauri)
● Orbital accelerations < a0 (MOND regime) 

● MOND boosts orbital velocities by 20% in Solar neighbourhood
● Accurate observations of about 500 WBs necessary (Banik & Zhao 2018)

● e.g. Gaia data release 3, Theia mission
● Statistical treatment of undetected close companions to WBs necessary

● WBs with r < 3 kAU should be similar to WBs with r > 3 kAU in Newton 
● MOND without EFE is ruled out by the WB test

● Pittordis & Sutherland 2019
● other tests also rule out MOND without EFE (e.g. Chae+ 2020)
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● KBC void falsifies ΛCDM at 6.04σ

● KBC void + Hubble tension falsify ΛCDM at 7.09σ

● failures of ɅCDM model cover all scales from dwarf galaxies (e.g. disk of satellites, Pawlowski+ 2014) to Gpc scales 
(this work, see also Kroupa et al. 2010, Kroupa 2012, 2015, Sellwood+ 2019, Asencio+, MNRAS, 2021) 

● matter distribution on a Gpc scale requires enhanced growth of structure

e.g. Milgromian gravitation (MOND) would also explain galaxy dynamics (RAR), M33 disk stability (Banik+, ApJ, 2021)

● MOND cosmology with fast collisionless matter (νe.g. 11eV/c2 sterile neutrinos, Angus 2009)

● standard expansion history, BBN, CMB anisotropies, and Bullet Cluster + 30 virialized clusters

● structure growth enhanced and self-regulated by external fields from surrounding structures

● MOND describes the local observations at 2.53σσ

● enhanced growth of structure allows the formation of KBC-like voids

● outflow from large void explains high local H0 and 

● common objections to void scenario addressed in Section 5.3 of our paper

● blogs describing paper: tritonstation.com & darkmattercrisis.wordpress.com

Summary & Conclusions (MNRAS, 499, 2845): 

q0
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AppendixAppendix



MOND theory & cosmology36

Leibniz Institute for Astrophysics Potsdam (AIP)
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● Leibniz Junior Research Group led by Dr Marcel S. 
Pawlowski (mpawlowski@aip.de) at Potsdam

● “Cosmic Choreographies – Studying Systems of 
Satellite Galaxies and Their Phase-Space 
Correlations”
● 1 postdoctoral position (up to 5 years)
● 2 PhD students

● Application deadline: Thursday, December 31, 2020 
(bewerbung_2020-20@aip.de)

● More information: 

https://jobregister.aas.org/ad/66c4e4a6

mailto:mpawlowski@aip.de
mailto:bewerbung_2020-20@aip.de
https://jobregister.aas.org/ad/66c4e4a6
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KBC (2013): luminosity function

● Shape of luminosity function clearly 
determined based on 57-75% of 
luminosity function

● Normalization systematically lower at 
low z

● Density contrast similar between 
magnitude bins
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El Gordo Galaxy Cluster Interaction
Asencio, Banik, Kroupa 2021 (DOI: 10.1093/mnras/staa3441)

● Mass-redshift distribution of fast-
interacting clusters along past 
lightcone in ΛCDM simulation

● El Gordo inconsistent at 6.16σ  
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Outlook

● Enable standard RAMSES hydrodynamics 
and cosmology to study galaxy formation 
with Phantom of RAMSES (PoR MOND 
patch, Lüghausen+ 2015)
● Simulation by Nils Wittenburg
● SPODYR group (University of Bonn) 

● Self-consistent cosmological MOND 
simulation on much larger scales
● study formation of voids in a large simulation 

box
● What does a typical KBC-like void profile look 

like?
● cosmic variance
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Outlook

● Enable standard RAMSES hydrodynamics 
and cosmology to study galaxy formation 
with Phantom of RAMSES (PoR MOND 
patch, Lüghausen+ 2015)
● Simulation by Nils Wittenburg
● SPODYR group (University of Bonn) 

● Self-consistent cosmological MOND 
simulation on much larger scales
● study formation of voids in a large simulation 

box
● What does a typical KBC-like void profile look 

like?
● cosmic variance Wittenburg+ (in prep.)

Origin of galaxies in a MOND cosmology

lo
g

1
0
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Outlook

● Enable standard RAMSES hydrodynamics 
and cosmology to study galaxy formation 
with Phantom of RAMSES (PoR MOND 
patch, Lüghausen+ 2015)
● Simulation by Nils Wittenburg
● SPODYR group (University of Bonn) 

● Self-consistent cosmological MOND 
simulation on much larger scales
● study formation of voids in a large simulation 

box
● What does a typical KBC-like void profile look 

like?
● cosmic variance Wittenburg+ (in prep.)

Origin of galaxies in a MOND cosmology

lo
g

1
0
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Overview: Keenan-Barger-Cowie void and H0 tension

✓ ✓✓
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Take home message 

1a) The observed KBC void falsifies ΛCDM at 6.04σ

1b) The observed KBC void + Hubble tension falsify ΛCDM at 7.09σ

2) Neither problem occurs in MOND
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Detection of external field effect (EFE)

● Chae+2020 (ApJ, 904, 51)
● No EFE expected because 

galaxies isolated
● No EFE required in rotation 

curve fits (|ΔBIC| < 10)
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Detection of external field effect (EFE)

● Chae+2020 (ApJ, 904, 51)
● Strong EFE expected based on 

environment
● “Very strong” evidence for EFE 

in rotation curves (∆BIC >> 10)

● Inferred gext from rotation curve 
agrees with prior estimates
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Colgáin (2019)
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Results: Gaussianity test of the selected density 
fluctuations in the MXXL simulation



MOND theory & cosmology48

MW satellite galaxies lie within a thin 
plane (Pawlowski & Kroupa 2013). 
Analogous situation for M31 (Ibata+ 2013)

Galaxies observed 
forming within tidal tails 
(Mirabel+ 1992)

Should only contain 
baryons as DM can’t cool 
and form dense tidal tails
(Wetzstein+ 2007)

Internal dynamics can’t be 
explained by Newtonian 
gravity (Kroupa, 2015)

MW and M31 satellite galaxies have high internal 
velocity dispersions,  requiring strong self-gravity 
(McGaugh & Wolf, 2010)

Satellites were formed 
from tidal debris. 
Alternatives not very likely 
(Pawlowski+ 2014 and 
references therein)

http://adsabs.harvard.edu/abs/2013MNRAS.435.2116P
http://adsabs.harvard.edu/abs/2013Natur.493...62I
http://adsabs.harvard.edu/abs/1992A%26A...256L..19M
http://adsabs.harvard.edu/abs/2007MNRAS.375..805W
http://adsabs.harvard.edu/abs/2015CaJPh..93..169K


MOND theory & cosmology49

Results:
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Results: Peculiar velocities
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Results: H0 from strong lensed systems

 
● Empirically, light deflection in strong lenses 

works similar to General Relativity for the 
same non-relativistic g (Collett+ 2018)

● Relativistic MOND theories exist where 
gravitational waves travel at the speed of 
light (Skordis & Złośnik 2019)

● Decreasing inferred H0 with lens redshift 
(Wong+2020) evident at 1.9σ

⇒  curvature in Hubble diagram (like with SNe)

 

● Consistent with MOND model (2.05σ), but 
suggestive of a larger void than KBC data
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νHDM framework: apparent expansion history

Hubble flow velocity very small: vHubble >> vpec

(e.g. Kim+2020)
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Results:
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Results:
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Results:
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Results:
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Results: Hubble field effect
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Results: Time-dependent external field effect
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Results: Time-dependent external field effect
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