The muon g-2 $\iff \Delta \alpha$ connection

Massimo Passera INFN Padova

"Newton 1665" seminars September 17 2020 **Solution** The muon g-2: recent theory progress

- \bigcirc Muon g-2 $\iff \Delta \alpha$ connection
- The MUonE project

- **BNL 821**: $a_{\mu}^{EXP} = (116592089 \pm 54_{stat} \pm 33_{sys}) \times 10^{-11} [0.5ppm].$
- Fermilab E989: new muon g-2 experiment aims at ±16x10⁻¹¹
 0.14ppm. First 3 data taking completed. Analysis of run 1
 (~1xBNL) in progress. First result expected very soon with BNL precision.
- J-PARC: Muon g-2 proposal. Phase-1 with ~ BNL precision.

μ

The muon g-2: recent theory progress

White Paper of the Muon g-2 Theory Initiative: arXiv:2006.04822 The muon g-2: the QED contribution

 $a_{\mu}^{QED} = (1/2)(\alpha/\pi)$

Schwinger 1948

+ 0.765857426 (16) (α/π)²

Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; MP '04

+ 24.05050988 (28) (α/π)³

Remiddi, Laporta, Barbieri ... ; Czarnecki, Skrzypek; MP '04; Friot, Greynat & de Rafael '05, Mohr, Taylor & Newell 2012

+ 130.8780 (60) (α/π)⁴

Kinoshita & Lindquist '81, ..., Kinoshita & Nio '04, '05; Aoyama, Hayakawa,Kinoshita & Nio, 2007, Kinoshita et al. 2012 & 2015; Steinhauser et al. 2013, 2015 & 2016 (all electron & τ loops, analytic); Laporta, PLB 2017 (mass independent term). COMPLETED²!

+ **750.86 (88)** (α/π)⁵ **COMPLETED**!

Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta,... Aoyama, Hayakawa, Kinoshita, Nio 2012, 2015, 2017 & 2019. Volkov 1909.08015: A₁⁽¹⁰⁾[no lept loops] at variance, but negligible Δ.

Adding up, we get:

The electroweak contribution

One-loop plus higher-order terms:

Kukhto et al. '92; Czarnecki, Krause, Marciano '95; Knecht, Peris, Perrottet, de Rafael '02; Czarnecki, Marciano and Vainshtein '02; Degrassi and Giudice '98; Heinemeyer, Stockinger, Weiglein '04; Gribouk and Czarnecki '05; Vainshtein '03; Gnendiger, Stockinger, Stockinger-Kim 2013, Ishikawa, Nakazawa, Yasui, 2019.

The Hadronic LO contribution

(error)² value Hadronsrad 1.4 0.6 2 μ 0.6 $a_{\mu}^{had,LO VP}$ 0.9 1.4 0.9 Keshavarzi, Nomura, Teubner 2018 $K(s) = \int_0^1 dx \, \frac{x^2(1-x)}{x^2 + (1-x)(s/m^2)} \qquad a_\mu^{\mathsf{HLO}} = \frac{1}{4\pi^3} \int_{4m^2}^\infty ds \, K(s) \, \sigma^{(0)}(s) = \frac{\alpha^2}{3\pi^2} \int_{4m^2}^\infty \frac{ds}{s} \, K(s) R(s)$ a_µ^{HLO} = 6895 (33) x 10⁻¹¹ F. Jegerlehner, arXiv:1711.06089 = 6939 (40) x 10⁻¹¹ Davier, Hoecker, Malaescu, Zhang, arXiv:1908.00921 = 6928 (24) x 10⁻¹¹ Keshavarzi, Nomura, Teubner, arXiv:1911.00367 = 6931 (40) x 10-11

Muon g-2 TI WP: arXiv:2006.04822

Radiative Corrections to $\sigma(s)$ are crucial. S. Actis et al, Eur. Phys. J. C66 (2010) 585

ĕ Great progress in lattice QCD results. Recent BMW result with subpercent precision: a_µHLO = 7087(53)x10⁻¹¹. Tension with dispersive evaluations. S. Borsanyi et al. 2002.12347.

Krause '96; Keshavarzi, Nomura, Teubner 2019; Muon g-2 TI WP.

• $O(\alpha^4)$ contributions of diagrams containing HVP insertions:

Kurz, Liu, Marquard, Steinhauser 2014

The Hadronic LbL contributions

- Significant improvements due to data-driven dispersive approach.
- Great progress on the lattice. Recent RBC result: 79(35)x10⁻¹¹ arXiv:1911.08123

• HNNLO light-by-light
$$a_{\mu}^{HNNLO}(IbI) = 2 (1) \times 10^{-11}$$

Colangelo, Hoferichter, Nyffeler, MP, Stoffer 2014; Muon g-2 TI WP, 2006.04822

Comparing the SM prediction with the measured muon g-2 value:

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 279 \ (76) \times 10^{-11}$$
 3.7 σ

Muon g-2 TI

Muon g-2 $\iff \Delta \alpha$ connection

Marciano, MP, Sirlin 2008 & 2010 Keshavarzi, Marciano, MP, Sirlin 2020

Is Δa_{μ} due to missed contributions in the hadronic cross section?

- Can Δa_{μ} be due to missing contributions in the hadronic $\sigma(s)$?
- An upward shift of σ (s) also induces an increase of $\Delta \alpha_{had}^{(5)}(M_Z)$.
- Consider:

$$\begin{aligned} \mathbf{a}_{\mu}^{\text{HLO}} & \to \\ a &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, f(s) \, \sigma(s), \qquad f(s) = \frac{K(s)}{4\pi^{3}}, \, s_{u} < M_{Z}^{2}, \\ \Delta \alpha_{\text{had}}^{(5)} & \to \\ b &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, g(s) \, \sigma(s), \qquad g(s) = \frac{M_{Z}^{2}}{(M_{Z}^{2} - s)(4\alpha\pi^{2})}, \end{aligned}$$

and the increase

$$\Delta \sigma(s) = \epsilon \sigma(s)$$

 ϵ >0, in the range:

$$\sqrt{s} \in \left[\sqrt{s_0} - \delta/2, \sqrt{s_0} + \delta/2\right] \quad \Longrightarrow \quad$$

The muon g-2: connection with the SM Higgs mass (2010)

How much does the M_H upper bound from the EW fit change when we shift up $\sigma(s)$ by $\Delta\sigma(s)$ [and thus $\Delta\alpha_{had}^{(5)}(M_Z)$] to accommodate Δa_{μ} ?

Marciano, MP, Sirlin, 2008 & 2010

The muon g-2: connection with the SM Higgs mass (update)

Major update: Higgs discovered, improved EW observables (Mw, $sin^2\theta$, M_{top}, ...), updates to $\sigma(s)$, theory improvements, global fit,

. . .

Parameter	Input value	Reference	Fit result	Result w/o input value
M_W (GeV)	80.379(12)	[5]	80.359(3)	80.357(4)(5)
M_H (GeV)	125.10(14)	[5]	125.10(14)	94^{+20+6}_{-18-6}
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \times 10^4$	276.1(1.1)	[23]	275.8(1.1)	272.2(3.9)(1.2)
$m_t (\text{GeV})$	172.9(4)	[5]	173.0(4)	
$\alpha_s(M_Z^2)$	0.1179(10)	[5]	0.1180(7)	
M_Z (GeV)	91.1876(21)	[5]	91.1883(20)	
Γ_Z (GeV)	2.4952(23)	[5]	2.4940(4)	
Γ_W (GeV)	2.085(42)	[5]	2.0903(4)	
$\sigma_{\rm had}^0$ (nb)	41.541(37)	[108]	41.490(4)	
R_l^0	20.767(25)	[108]	20.732(4)	
R_c^{0}	0.1721(30)	[108]	0.17222(8)	
R_{b}^{0}	0.21629(66)	[108]	0.21581(8)	
$\bar{m_c}$ (GeV)	1.27(2)	[5]	1.27(2)	
$\bar{m_b}$ (GeV)	$4.18^{+0.03}_{-0.02}$	[5]	$4.18\substack{+0.03\\-0.02}$	
$A_{\rm FR}^{0,l}$	0.0171(10)	[108]	0.01622(7)	
$A_{\rm FB}^{0,c}$	0.0707(35)	[108]	0.0737(2)	
$A_{\rm FB}^{0,b}$	0.0992(16)	[108]	0.1031(2)	
A_{ℓ}	0.1499(18)	[75,108]	0.1471(3)	
A _c	0.670(27)	[108]	0.6679(2)	
A_b	0.923(20)	[108]	0.93462(7)	
$\sin^2 \theta_{\rm eff}^{\rm lep}(Q_{\rm FB})$	0.2324(12)	[108]	0.23152(4)	0.23152(4)(4)
$\sin^2 \theta_{\rm eff}^{\rm lep}({\rm Had \ Coll})$	0.23140(23)	[100]	0.23152(4)	0.23152(4)(4)

The muon g-2: connection with the SM Higgs mass (2020)

Shifts $\Delta \sigma(s)$ to fix Δa_{μ} are possible, but conflict with the EW fit if they occur above ~1 GeV

How large are the required shifts $\Delta \sigma(s)$?

Shifts below 1 GeV conflict with the quoted exp. precision of $\sigma(s)$

What happens to the electron g-2?

Using α = 1/137.036 999 046 (27) [Cs 2018], the SM prediction for the electron g-2 is:

The hadronic VP contrib. is 16.66(6) x 10⁻¹³ (up to NNLO) [QED 5-loop $a_e^{QED5} = 4.6 \times 10^{-13}$, $(m_e/m_\mu)^2 \Delta a_\mu = 0.7 \times 10^{-13}$]

 NP sensitivity limited only by the experimental errors in α and a_e. May soon play a pivotal role in probing NP in the leptonic sector Giudice, Paradisi, MP 2012

Shift of the electron g-2

Shifts $\Delta \sigma(s)$ to fix Δa_{μ} only slightly increase the $|\Delta a_{e}| \sim 10^{-12}$ tension

Shift of the e/ μ g-2 scaled HLO ratio

Good agreement between lattice [Giusti & Simula 2020] and KNT19. Possible future bounds on very low energy shifts $\Delta\sigma(s)$?

- Crivellin, Hoferichter, Manzari and Montull, "Hadronic vacuum polarization: (g-2)_μ versus global electroweak fits," PRL125 (2020) 9, 091801 [arXiv:2003.04886].
- Eduardo de Rafael, "On Constraints Between Δα_{had}(Mz²) and (g_µ-2)_{HVP}," arXiv:2006.13880.
- Malaescu and Schott, "Impact of correlations between a_{μ} and α_{QED} on the EW fit", arXiv:2008.08107.

The MUonE project

Spacelike proposal for a_{μ}^{HLO}

 The leading hadronic contribution a_µ^{HLO} computed via the timelike formula:

$$a_{\mu}^{\text{HLO}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma_{\text{had}}^0(s)$$
$$K(s) = \int_0^1 dx \, \frac{x^2 \, (1-x)}{x^2 + (1-x) \left(s/m_{\mu}^2\right)}$$

• Alternatively, simply exchanging the x and s integrations:

$$a_{\mu}^{\text{HLO}} = \frac{\alpha}{\pi} \int_0^1 dx \left(1 - x\right) \Delta \alpha_{\text{had}}[t(x)]$$
$$t(x) = \frac{x^2 m_{\mu}^2}{x - 1} < 0$$

Lautrup, Peterman, de Rafael, 1972

 $\Delta \alpha_{had}(t)$ is the hadronic contribution to the running of α in the spacelike region: a_{μ}^{HLO} can be extracted from scattering data!

M. Passera Newton1665 Sep 17 2020

Carloni Calame, MP, Trentadue, Venanzoni, 2015

- $\Delta \alpha_{had}(t)$ can be measured via the elastic scattering $\mu e \rightarrow \mu e$.
- We propose to scatter a 150 GeV muon beam, available at CERN's North Area, on a fixed electron target (Beryllium). Modular apparatus: each station has one layer of Beryllium (target) followed by several thin Silicon strip detectors.

Abbiendi, Carloni Calame, Marconi, Matteuzzi, Montagna, Nicrosini, MP, Piccinini, Tenchini, Trentadue, Venanzoni EPJC 2017 - arXiv:1609.08987

- With 150 GeV muons, the high energy region inaccessible to MUonE contributes only 13% of the total a_μ^{HLO} integral. Recently it has been determined via lattice QCD Giusti&Simula and Marinkovic'&Cardoso 2019
- Statistics: With CERN's 150 GeV muon beam M2 (1.3 × 10⁷ µ/s), incident on 40 15mm Be targets (total thickness 60cm), 2 years of data taking (2×10⁷ s/yr) → ℒ_{int} ~ 1.5 × 10⁷ nb⁻¹.
- With this \mathscr{L}_{int} we estimate that measuring the shape of d σ /dt we can reach a <u>statistical</u> sensitivity of ~0.3% on a_{μ}^{HLO} , ie ~20 × 10⁻¹¹.
- Systematic effects must be known at ≤ 10ppm!
- Theory: To extract Δα_{had}(t) from MUonE's measurement, the ratio of the SM cross sections in the signal and normalisation regions must be known at ≤ 10ppm!
- Interplay and complementarity with lattice determination of a_{μ}^{HLO}
- Lol submitted to CERN SPSC in 2019. Test run in 2021 recently approved. Full-statistics run hopefully in 2022–24.

Conclusions

• Is Δa_{μ} due to missed contributions in the hadronic $\sigma(s)$? Shifts $\Delta \sigma(s)$ to fix Δa_{μ} conflict with the global EW fit above ~1 GeV Shifts below ~1 GeV conflict with the quoted exp. error of $\sigma(s)$.

• Shifts $\Delta \sigma(s)$ to fix Δa_{μ} slightly increase the a_e tension ($R_{e/\mu}$ ok).

 MUonE will provide an independent (spacelike) determination of aµ^{HLO} alternative to the dispersive and lattice ones.

Backup

The muon g-2: connection with the SM Higgs mass (2020) - 2

Uniform scaling of $\sigma(s)$ below 0.7 GeV

The muon g-2: connection with M_W and $sin^{2}\theta$

