A Bitter Pill: Overview of Primordial Nucleosythesis and the Primordial Li thium Pr oblem

Nucleosynthesis in the Early Universe

Big Bang Nucleosynthesis: A Symphony of Fundamental Forces

- BBN: unique arena
- all four fundamental forces participate
- BBN: unique testbed
 - probes all fundamental interactions

Standard BBN

- **% Gravity = General Relativity**
- **Microphysics: Standard Model of Particle Physics**
 - $N_{
 u} = 3$ neutrino species
 - $m_{\nu} \ll 1 \text{ MeV}$
 - Left handed neutrino couplings only
 - neutrinos non-degenerate: L pprox B and not $L \gg B$
- **% Kinetic equilibrium: Maxwell-Boltzmann nuclei**
- **** Dark Matter and Dark Energy**
 - Present (presumably) but non-interacting

Standard BBN

dard BBN models

relax these assumptions

test new physics

 $\left(\frac{\text{entropy}}{\text{however}}\right)$

- **Gravity = General Relativity**
- **Microphysics: Standard Model of Particle Physics**
 - $N_{\nu}=3$ neutrino species
 - $m_{\nu} \ll 1 \text{ MeV}$
 - Left handed neutrino couplings only
 - neutrinos non-degenerate: $L \approx R$ and
- **% Kinetic equilibrium: Maxwell-Bo**
- **Bark Matter and Dark Energy**
 - Present (presumably) b

```
Homogeneous U.
```

Expansion adiabatic

gives baryon density $\eta\propto
ho_{
m B,today}\propto\Omega_{
m B}h^{2}\propto$

 $\left(\frac{n_{\rm B}}{n_{\gamma}}\right)_{\rm BBN}$

Big Bang Nucleosynthesis

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae Radiation dominates! $\gamma, e^{\pm}, 3\nu\bar{\nu}$ Matter p, ntiny baryon-to-photon ratio (the only free parameter!) $\eta \equiv n_{\rm B}/n_{\gamma} \sim 10^{-9}$ Initial Conditions: T >> 1 MeV, t<< 1 sec n-p weak equilibrium: $pe^- \leftrightarrow n\nu_e$ $neutron-to-proton ratio: \overset{}{ne^+} \leftrightarrow p\overline{\nu}_e$ $n/p = e^{-(m_n - m_p)c^2/kT}$ Weak Freezeout: T ~ 1 MeV, t~1 sec $\tau_{\text{weak}}(n \leftrightarrow p) > t_{\text{universe}}$ fix $\left(\frac{n}{p}\right)_{\text{freeze}} \approx e^{-\Delta m/T_{\text{freeze}}} \sim \frac{1}{7}$

Light Elements Born: T~0.07 MeV, t~3 min reaction flow most stable light nucleus essentially all n 4He, ~24% by mass also: traces of D, 3He, 7Li

Light Elements: Sites

Deuterium

- see in galaxies backlit by quasars
- now to <1% precision! Pettini, Cooke+ 2013-2019

⁴He

- ionized gas (HII regions) in metal-poor galaxies
- New! CMB damping tail: SPT 2011,2012; Planck 2013-2018

7Li

- metal-poor halo stars in Milky Way
- now also extragalactic observations

³He

- hyperfine in Milky Way HII regions Rood, Wilson, Bania+
- no low-metal data; not used for cosmology

Testing BBN: Light Element Observations

Theory:

- 1 free parameter predicts
- 4 nuclides: D, ³He, ⁴He, ⁷Li

Observations:

• 3 nuclides with precision: D, ⁴He, ⁷Li

Comparison:

★each nuclide selects baryon density ★overconstrained--nontrivial test!

Result:

rough concordance!
 but not in detail! D and ⁷Li disagree
 need a tiebreaker

Battle of the Baryons: BBN+CMB

The Cosmic Microwave Background: CMB A Powerful Baryometer

CMB ΔT_{ℓ} independent measure of $\Omega_{\rm B}$

Twitter version: in recombining plasma

- baryon gravity boosts compression
- baryon inertia damps rarefaction peaks

BBN vs CMB: fundamental test of cosmology

Battle of the Baryons: II New World Order

Planck baryon density very precise

 $\Omega_{\rm B} h^2 = 0.022298 \pm 0.000020$ $\eta = (6.104 \pm 0.058) \times 10^{-10}$

i.e., a sub-1% measurement!

New strategy to test BBN:

 \checkmark use Planck $\eta_{\rm cmb}$ as BBN <u>input</u> \checkmark predict all lite elements with appropriate error propagation compare with observations

The Lithium Problem

BBN Observations: Light Element Abundances

The Problem

- Theoretical predictions: there and then
- Observations: here and now

The Solution

• correct for post-BBN processing: Metals \Leftrightarrow stars $\geq 10M_{\odot}$ \Leftrightarrow "time"

Nuclear Meltdown

Sbordone+ 2010

- huge increase in scatter at low [Fe/H]
- at least some stars efficiently eat lithium
- why does meltdown "turn on"?
- no points scatter up to BBN+CMB abundance

A New Lampost: Interstellar Lithium

- stellar lithium: measuring air quality outside factory
- try going to countryside!
 - interstellar
 medium of low metal galaxies
- proof of concept:
 - interstellar Li in
 SMC
 - metals ~ solar/4
 - VLT UVES

A New Lampost: Interstellar Lithium

Howk, Lehner, BDF, & Mathews 2013

Hoyle's Revenge? A Resonatingly Pretty Solution to Lithium?

Cyburt & Pospelov 2009

- * 11 dominant BBN reactions already well-studied
- * no room for factor ~3 surprises
- but "sub-dominant" reactions important if narrow resonance missed

cf Hoyle state in ¹²C burning

- * proposal: ⁷Be+d inelastic
- Chakraborty, BDF, & Olive 2011
- * systematic study of all A=7 destruction rxns
 - ✓ confirms ⁷Be+d ⇔⁹B*
 - ✓ even better: ³He+⁷Be[→]¹⁰C*
 t+⁷Be[→]¹⁰B*

OUTLOOK

Convergence of Particle Physics and Cosmology

- successes of both point to larger, deeper picture
- theoretical & experimental progress linked

BBN & CMB: Gates to the Early Universe

- basic concordance: big bang working to t~1 sec
- CMB alone now independently tests BBN!
- BBN + CMB powerfully probe new physics: dark matter, early Universe

The Lithium Problem: Planck+BBN >> Liobs

- problem has worsened from WMAP 2003 to Planck 2018
- astrophysics solutions possible but highly constrained
- nuclear physics precision needed: d(p,g)3He; 7Be(n,p)7Li
- new physics: dark matter? see Pradler talk

The Future:

- Even better CMB measurements (S4)
- New light element measures, stellar theory and data
- Interplay with nuclear, dark matter & accelerator physics

Stay Tuned!

Ask me to philosophize!

The Lithium Problem: Thoughts on the Way Forward

- New Physics solutions challenged by D precision
 - if new physics, seems very unusual and specific
 - yet dark matter non-detection invites new ideas
- Cosmology solutions face CMB LCDM consistency
- Nuclear Experiment lags observations! unacceptable!
- Stellar Models:
 - why does meltdown start and stop?
 - why small scatter along Spite plateau?
 - do we understand Li pre-main sequence?
- Observations: ⁶Li is it even present in halo stars? intererstellar Li as depletion and isotope probe

Paleolithography Collaborators

Richard Cyburt

Nachiketa Chakraborty

Vasilis Spanos

Tijana Prodanovic

Tsung-Han Yeh 葉宗翰

Charlie Young

Keith Olive

Elisabeth Vangioni

John Ellis