Lennert Thormaehlen
Institute for Theoretical Physics Heidelberg
On-line Newton 1665 Seminar
29th June 2020

XENON1T AND HIDDEN PHOTON DM

STELLAR COOLING AS AN ASSET

Based on arxiv:2006.11243 in collaboration with Gonzalo Alonso-Álvarez, Fatih Ertas, Joerg Jaeckel and Felix Kahlhoefer

KEY QUESTIONS

- 1. Can hidden photon DM explain the XENON1T excess?
- 2. Would such a hidden photon be a viable DM candidate?
- 3. How does it compare with stellar cooling limits and hints?

SETUP

HP kinetically mixed with SM photon:

$$\mathcal{L} \supset -\frac{1}{2} \epsilon F^{\mu\nu} X_{\mu\nu} - \frac{1}{2} m_X^2 (X^{\mu})^2 - j^{\mu} A_{\mu}$$

After a suitable field redefinition:

$$\mathcal{L} \supset -\frac{1}{2} m_X^2 (X^{\mu})^2 - j^{\mu} (A_{\mu} - \epsilon X_{\mu})$$

HP couples to SM electromagnetic current

HIDDEN PHOTONS IN XENON1T

Absorption rate of non-relativistic HPs in xenon

$$R = \epsilon^2 \frac{\rho_{DM}}{m_X} \frac{\sigma_{\gamma}}{m_N}$$

Monoenergetic peak is smeared out by the detector resolution

XENON1T data
[arXiv:2006.09721]

Hidden photon fit

HIDDEN PHOTONS IN XENON1T

 10^{-14}

Best fit:

$$m_X = 2.8 \text{ keV}$$

 $\epsilon = 8.6 \times 10^{-16}$

Global significance:

$$\sim 2 \sigma$$

 Lower significance than solar axion in large parts due to look-elsewhere

Results confirmed by

[arXiv:2006.13159, 2006.13929, 2006.14521]

HIDDEN PHOTONS AS DM

- Light DM cannot be produced thermally
- Non-thermal production mechanisms:
 - a) Misalignment (large initial field values) [arXiv:1201.5902]
 - b) Fluctuations during inflation [arXiv:1504.02102]

$$m_X = 2.8 \text{ keV}, \quad H_I \sim 7 \times 10^{11} \text{ GeV}$$

Higher inflation scales possible by including non-minimal coupling to gravity [arXiv:1905.09836]

$$\mathcal{L} \supset \frac{1}{6} \kappa R(X^{\mu})^2, \quad \kappa \sim 0.6 - 0.8$$
 $m_X = 2.8 \text{ keV}, \quad H_I \sim 3 \times 10^{12} \text{ GeV} - 10^{14} \text{ GeV}$

Strong small scale fluctuations expected!

c) Decay product of e.g. axion field, dark Higgs, inflaton, cosmic strings etc. [arXiv:1810.07188]

HIDDEN PHOTONS AS DM

- Stability is ensured:
 - Dominant decay channel $X \rightarrow \gamma \gamma \gamma$

$$\Gamma_{X\to 3\gamma} = \frac{17\alpha^4 \epsilon^2}{11664000\pi^3} \frac{m_X^9}{m_e^8} \simeq 1.4 \times 10^{-29} \,\text{Gyr}^{-1} \left(\frac{m_X}{2.8 \,\text{keV}}\right)^9 \left(\frac{\epsilon}{10^{-15}}\right)^2$$

[arXiv:0811.0326]

→ A hidden photon of 2.8 keV is a viable DM candidate!

STELLAR COOLING

- Stars can produce new light bosons in large abundances
- Stellar cooling supplies strong constraints
 but anomalous cooling is observed

HIDDEN PHOTONS AND HB STARS

Transverse modes resonantly convert to HPs if

$$\omega_P \sim m_X$$

 For significant cooling, resonance condition needs to be fulfilled in some spherical shell inside HB stars.

HIDDEN PHOTONS AND HB STARS

 Hidden photon might explain HB anomaly and XENON1T excess

 m_X [keV]

Sharp edge from resonance condition

$$\omega_P(r=0) \sim 2.6 \text{ keV}$$

Bounds and Hints from: [arxiv:1512.08108]

& [arxiv:1412.8379]

HIDDEN PHOTONS AND HB STARS

 Hidden photon might explain HB anomaly and XENON1T excess

- The hint from the *R*-parameter could be customised for HPs.
- Time dependence of the signal will give new clues

TT

Bounds and Hints from: [arxiv:1512.08108] & [arxiv:1412.8379]