Co-SIMP Miracle

Juri Smirnov

Newton 1665: 06/29/20 In collaboration with: John Beacom (OSU, CCAPP)

Production

Freezeouts

 $\Gamma_{\rm DM} = \langle \sigma v_{\rm rel.} \rangle \, n_{\rm DM} > H(T)$ $\Omega_{\rm DM} \, h^2 \approx \frac{0.12}{\langle \sigma v_{\rm rel.} \rangle \, [25 \text{TeV}]^2}$

 $\Gamma_{\rm DM} = \langle \sigma_{3\to 2} v_{\rm rel.}^2 \rangle \, n_{\rm DM}^2 > H(T)$ $\Omega_{\rm DM} \, h^2 \approx \left(\frac{\rm MeV}{m_{\rm DM}}\right) \frac{0.12}{\sqrt{\langle \sigma_{3\to 2} v_{\rm rel.}^2 \rangle \left[3 {\rm MeV}\right]^5}}$

$$\Gamma_{\rm DM} = \langle \sigma_{3\to 2} v_{\rm rel.}^2 \rangle n_{\rm DM} n_{\rm SM} > H(T)$$
$$\Omega_{\rm DM} h^2 \approx \left(\frac{\rm MeV}{m_{DM}}\right)^3 \frac{0.12}{\langle \sigma_{3\to 2} v_{\rm rel.}^2 \rangle [100 \,{\rm MeV}]^5}$$

Dark Matter Annihilation $\langle \sigma v_{\rm rel.} \rangle$

Dark Matter Mass

Dark Matter Mass

Dark Matter Mass

Dark Matter Mass

Co-SIMP Parameter Space

Electrophilic Co-SIMP

Monoenergetic Recoil

arXiv: 2002.04038; J. Smirnov, J. Beacom

Monoenergetic Recoil

arXiv: 2002.04038; J. Smirnov, J. Beacom

XENON1T Signal

v2 on arXiv today: arXiv: 2002.04038v2; J. Smirnov, J. Beacom

Look right here effect

$$\Gamma_{\rm DM} = \langle \sigma_{3\to 2} v_{\rm rel.}^2 \rangle n_{\rm DM} n_{\rm SM} > H(T)$$
$$\Omega_{\rm DM} h^2 \approx \left(\frac{\rm MeV}{m_{DM}}\right)^3 \frac{0.12}{\langle \sigma_{3\to 2} v_{\rm rel.}^2 \rangle [100 \,\mathrm{MeV}]^5}$$

Look right here effect

 $\Gamma_{\rm DM} = \langle \sigma_{3\to 2} v_{\rm rel.}^2 \rangle \, n_{\rm DM} n_{\rm SM} > H(T)$ $\Omega_{\rm DM} h^2 \approx \left(\frac{\,{\rm MeV}}{m_{DM}}\right)^3 \frac{0.12}{\langle \sigma_{3\to 2} v_{\rm rel.}^2 \rangle [100 \,{\rm MeV}]^5}$

Given XENON1T mass and exposure: +50 events $\Rightarrow M_{\rm DM} \approx 30 - 50 \text{ keV}$ $\Rightarrow E_R \approx 2 - 6 \text{ keV}$

Look right here effect

Given XENON1T mass and exposure: +50 events $\Rightarrow M_{\rm DM} \approx 30 - 50 \text{ keV}$ $\Rightarrow E_R \approx 2 - 6 \text{ keV}$

Implications

Scattering off Electrons

arXiv: 2002.04038; J. Smirnov, J. Beacom

Scattering off Electrons

arXiv: 2002.04038; J. Smirnov, J. Beacom

Scattering off Electrons

A. New target for low energy recoils at 30 - 50 keV

A. New target for low energy recoils at 30 - 50 keV
B. Modified Signal shape in Argon due to atomic structure

A. New target for low energy recoils at 30 - 50 keV
B. Modified Signal shape in Argon due to atomic structure

C. Richer neutrino sector possible: Tv about 10% lower than in SM for consistency with BBN

A. New target for low energy recoils at 30 - 50 keV B. Modified Signal shape in Argon due to atomic structure C. Richer neutrino sector possible: Tv about 10% lower than in SM for consistency with BBN D. New collider signatures expected

A. Emerging Showers?

Hadronic and

Electromagnetic

A. Emerging Showers?

Hadronic and

Electromagnetic

B. Opacity of materials

A. Emerging Showers?

Hadronic and

Electromagnetic

B. Opacity of materials

C. Loop coefficients

-> Work in progress with:

Bei Zhou and John Beacom

Summary

A. New thermal Dark Matter production

mechanism proposed

Summary

A. New thermal Dark Matter production

mechanism proposed

B. The fundamental process can be directly tested in lab and consistent with XENON1T excess

Summary

A. New thermal Dark Matter production mechanism proposed B. The fundamental process can be directly tested in lab and consistent with XENON1T excess C. Can be confirmed with low threshold detectors, new astrophysical probes, ...

Thanks!

Neff for coupling to Electrons

New Forces

Long Range: light Z' Rydberg Atoms (n>>1):

arXiv: Jones, Potviliege, Spannowsky

Short Range: loops, heavy Z'

Need compactness: True Muonium

arXiv: Smirnov, Beacom JCAP 1404 (2014) 022: Kopp, Michaels, JS

New Forces

Long Range: light Z' Rydberg Atoms (n>>1):

arXiv: Jones, Potviliege, Spannowsky

Short Range: loops, heavy Z'

Need compactness: True Muonium

arXiv: Smirnov, Beacom JCAP 1404 (2014) 022: Kopp, Michaels, JS

Positronium

$$\Delta E_{\rm hfs} \approx -\frac{\alpha_{\rm EM}^3 m_\ell^3}{8\pi} \frac{1}{128\pi^4 \Lambda^2}$$

JCAP 1404 (2014) 022: Kopp, Michaels, JS

$$\Delta E_{\rm hfs}^{e^+e^-} \approx -43 \ {\rm Hz} \times \left(\frac{{\rm GeV}}{\Lambda}\right)^2$$

 $\Delta E/E \approx \mathcal{O}(10^{-10})$

True Muonium

$$\Delta E_{\rm hfs} \approx -\frac{\alpha_{\rm EM}^3 m_{\ell}^3}{8\pi} \frac{1}{128\pi^4 \Lambda^2}$$

$$\int_{\rm Kopp, \, Michaels, \, JS} \Delta E_{\rm hfs}^{e^+e^-} \approx -43 \, {\rm Hz} \times \left(\frac{{\rm GeV}}{\Lambda}\right)^2$$

$$\Delta E/E \approx \mathcal{O}(10^{-10})$$

$$\Delta E_{\rm hfs}^{\mu^+\mu^-} \approx -380 \, {\rm MHz} \times \left(\frac{{\rm GeV}}{\Lambda}\right)^2$$

Phys.Rev. D100 (2019) no.5, 053003: Vidal, Ilten, Plews, Shuve, Soreq

arXiv: Smirnov, Beacom

Example: Dirac Materials

$$H_{\ell} = \begin{pmatrix} 0 & v_F \ell \cdot \boldsymbol{\sigma} - i\Delta \\ v_F \ell \cdot \boldsymbol{\sigma} + i\Delta & 0 \end{pmatrix}, \qquad E_{\ell}^{\pm} = \pm \sqrt{v_F^2 \ell^2 + \Delta^2}.$$

Neff for coupling to Electrons

$$\frac{s_{\nu}(T_{\text{dec.}})}{s_{\gamma}(T_{\text{dec.}})} = \frac{s_{\nu}(T)}{s_{\gamma}(T)}$$

$$\rho = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right)$$

 $\Delta N_{eff}(T_{\rm BBN}) \approx -0.25 \text{ for } M_{\chi} \approx 0.2 \text{ MeV.}$ $\Delta N_{eff}(T_{\rm BBN}) \approx -0.5 \text{ for } M_{\chi} \approx 0.4 \text{ MeV.}$ $\Delta N_{eff}(T_{\rm CMB}) \approx -1$

Nucleophilic Co-SIMP

Scattering off Nucleons

arXiv: 2002.04038; J. Smirnov, J. Beacom

Dark Matter Self Interactions

arXiv: 2002.04038; J. Smirnov, J. Beacom