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B Ol [ER AFFECTS &

» Cosmological inflation: Nearly
De Sitter evolution

» Current era of cosmological
acceleration, De Sitter-like

* Eternal inflation, asymptotic
De Sitter, possible resolution to
cosmological constant.

Temperature anisotropy map from Planck satellite
<PPL>~ | /k3F )
ns = 0.968 + 0.006 (PLANCK)



BABY LANDSCAPE

* Eternal Inflation & the Landscape
offer a solution to the CC
problem

R (oS alfiter dark energy
discovery, can we do controlled
calculations!?

* Our final result is probability
distribution over field strengths
observed In different Hubble

patches at late times
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1

K12
21 K31
K13
2
\ 3
K32

\_

Allowing backreaction of scalar
onto geometry gives probability
distribution over different
Cosmological Constants



IR DIVERGENCE

* Let's compute the free theory scalar two-point function
H?%(1 + k*n?)

e
ds? =i e i

(Prp—k) ~

k2 J. ot 2
| o ~ @)
* What It we go to position space! e
dk
(G@)o)) ~ [ 5 ~og(kuv) ~ log(rr)



POSITION SPACE

* Finrte result:

@@0w) = H? | L2 +log [k (A0? ~ 7]

» But every propagator comes with log[kir]

* Cutoff at horizon-scale at intial time = kr ~ [/No
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PERTURBATION THEORY BREAKS

No matter how
small A,

. IOg[kIR]NtO to eventually

overwhelmed

* At late times theory

becomes nonperturbative.
to to
* How bad Is It! @ 0
* How to regain control? to 10 o :
0 0
to

to/—\ o
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IN-IN FORMALISM

* Let's compute (meta)observable

B im0 () Eent tartl IBINg

'\

* Expectation value, not S-matrix st el clence
Prove this equality

($(t,)") = §_j< / i /dt/ /

, <H [gbl(t )", Hy(ty ] CH( t2 H] (t:) >
- Commutators, time-ordering enforce manifest causality.

Reformulation in Weinberg: hep-th/0506236
:



IN-IN MANIFEST CAUSALITY

» Graphical argument makes heavy use of Weinberg’s “nested
commutator’’ reorganization of in-in, but there Is an objection

NIl
¢
(o (t,2)"10)] o (BD||Texp (i [ Hi(t)at
IR=rneg. k)
¢
X ¢r(t,x)" | T exp (z/ H](t//)dt”> IBD')
to(l—’ie)

* [he typical i€ prescription breaks unitarity and the symmetry
between bra and ket evolution

* However, there Is an equivalent €-deformation, which is
explicitly unitary, and preserves the manifest causality of

Weinberg, (0 — et [¢f Kaya: 1810.12324 and MB & Sundrum: 2007.xxxxx]
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DE SIT TER DIAGRAMMAR

* wo types of propagators:

¢¢¢¢¢

* Gr = 0(N"-N)[e(N).p(n)] ~ k°

' G = <))} ~ 1K N
* Leading contribution minimizes m ......
commutators : :

Solid: Commutator (One per vertex)

o Causallty—} Dashed: G+

G+ log In position space
& eemimLtator per vertex ntegrand ~ log[kir]P-

« >0 commutator with ext. field
S



LEADING LOG

Every diagram topology
decomposed in G+ and
Gr,

then power count

Gw = (G++Gr)/2
Gw = <e(n)en)> ~ /K

In-In Formalism of Musso
hep-th/061 1258
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EOOPS FROM TRESS

=N
* Leading-Log budget 1s V
retarded propagators
& Time
* Must touch every vertex
and correlation point, and
connect to later time. =
<'_ & Time

“De Si e d T * Gr subgraphs are all trees!
e Sitter supernorizon modes are semiclassical™ | | £ ¢ cc touches one

¥ and only one correlation point



FROM INTEGRAND TO INTEGRAL

» Soft expansion:

H2

G—|— soft ﬁ H(k s kIR))

i H?
GRsoft = 9(77 5 77) 3 (773 T3 77/3) , . .

; Dominant contribution

il «— | for strongly-ordered times

GR soft ~ 9(77/ o 77) 773 S , ’
3 n| >> [N

* Loop momenta are G+ momenta

- We get one log(kr) per propagator:

d
P-V G+ propagators . e log(kr)
IR
n' dn
/ kR (Hn*)

12

V Gr propagators / n° ~ log(kr)
1



tP

» All Feynman diagram topologies contribute to leading-log.

Q0 & -

» Only dimensionful scale to balance kir Is correlation time:

log(k[Rn)P ~ IfP



CLASSICAL PERTURBATION THEORY

.= X o

=X o

¢4(t7 f)
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Classical Field Theories can be perturbatively solved

as convolutions of Gr propagators with the free-field solution, o
|4}



PEVVING CLASSICAL FRESS

First do classical
perturbation theory

on every field. Then
sew together classica

solutions with G+ =

<(po(po>

o
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FIRST ORDERNESS

* IR of De Sitter satisfies first order equation of motion for weak

potential
2

¢+ 3Hp+ ¥¢+V’(qﬁ) =0
= 3Héo+ V' (¢) =0

* Free theory retarded propagator

L e SN
r(M, 1 k) = 0(n —n) 3 = A =)

» Retarded propagator foré = 0 in DS




BURING MASSLESS DE SHF

* (P In our correlation functions given by retarded trees
convolved with o

* (p satisfies Inhomogeneous equation of motion

It

IS g s S 10
¢=—3g" ¢ 4

* Source term accounts for time-dependence in the quantum
fluctuations



CORRELATOR UPDATE EQUATION

» Differentiate our (meta)observable
1

(") = (n¢"7'¢) = —g=(nd" T V'(9)) + (n¢"1¢)
@° . (O"
H2 (Hﬁ)a GRCOincident st
(Hn)ﬁnGRsoft 04 (HU)8 == :

R (Hn)0ylog(kirn) = H°



EOONSIS TENCY CHIESSS

» Does the power counting we supposed to derive equation
emerge from solving It?

YES!
2n 4 H2 " n A 2
<¢ (t, ) >VEV = (2n— 1! (mlna> {1 — §(n+1) @ln a

From gr-qc/0505 1 |5

= ;@(35713 + 170n? +225n+74)[f22ln2a]2 — }
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FOKKER-PLANCK EQUATION

» With equations for arbitrary n-point function, we confirm
the following ansatz for generating function, which 1s
Starobinsky’s famous Fokker-Planck equation for De Sitter

p(é,t) = (%[V’(cb)p(qb, D]+ 2505 p(4:1)

Sl

* While generic solution Is difficult, we can straightforwardly
oet late-time behavior (¢7) = / dpp(¢,t) ¢"

p(¢,t) = Nesit¥ + 3 &, (g)e T

=4l
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PALTE TIME LIPTES

» Fokker-Planck solution has zero eigenvalue with all others
bositive. Solution Is nonperturbative.

» At very late times, any dependence on inrtial condritions is

washed out. We flow to distribution dictated by interaction
alone.

500 -
400 7
300 f
200 f

Unresummed theory breaks down before t ~ A-!/2
With LL resummation, still have control

* Asymptotic PrMs



FU TURE DIRECTIONS

* We have recovered behavior reminiscent of the parton shower,* is this a hint
of strong dynamics in dual!

 Both DS and PS have leading Markovian description
* Probabilities flow in both (fixed point in DS) (Fokker-Planck vs. DGLAP)
* Factorization in both (jets in QCD vs. Hubble patches)

* Resummation at NLL! Quantum corrections in DS will shift density-matrix off

the diagonal. Possible lesson for/from merging fixed-order Matrix Elements
and Parton Shower in QCDY?

 Given our novel diagrammatic analysis for scalars, can we tackle similar open
question for gravitons, does their IR divergence destabilize DS?

* Toy landscape at late times (distribution over @@). VWarmup problem for

eternal inflation See also
22 1911.00022: Senatore & Gorbenko




ELOSING LOOPROESS

* For general number of

retarded propagators, Nr
>V

(6(n,0)™) v ~ AV log(ki )V +F~Ne

* Expanding in kn just brings
compensating powers of

Momentum cutoff determined

nearliest- NO Way o) get by earliest momentum that vertex touches.
If Ni propagators terminate at n;, then it
ahead Of SOﬂ:’ Strongly— s earliest vertex for Ni.

ordered case.

L



pEALAR QF 1IN DE SHE RS

* In general, we work In time-momentum space

1
(Hn)?

* The ground state is more subtle in DS than Minkowsk

V(9)

&= /dn d°k 2“;77)2 ((0,9)° — k*¢*) —

* No global timelike Killing vector (Energy will Redshift)

* Spacetime expansion crates particles (relative to Minkowsk
vacuum)

- Standard choice i1s Bunch-Davies (uniquely D5-invariant,
Mink.-like in UV)

ik



BUNCH-DAVIES VACUUM

» Ground state! Which classical solution multiplies annihilation
operator?

o(n, k) = Hi*'? |a HE (kn) + by HS (k)

» Standard choice I1s Bunch-Davies vacuum (bx=0):*

* Alternate DS
» DS invariant, a,b, k-independent invariant states,

OX-vacua, are
ikely pathological

* Minimizes energy as t—-00 (non-local, acausal),

see Lowe, Holman

» Coefficient becomes positive frequency as t—-o0

L5



LIGHTNING DE SITTER OVERVIEW

pup = -

» Global DS as an 0
embedded hyperboloid * A
» Patches of DS (inflation-

ke) = FRW ana
conformal metrics:

45
ds® = dt? — e*Hidy 1!
1

(Hn)?

—Ht

n = e Ht
=] S

H
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FORMAL DESITTERS

* QFT In De Sitter raises conceptual

questions (Infrared, late times)
[think QED in the 40s and 50s]

* What are microstates-and the
holographic dual!

« Open questions with gravons:
(Polyakov, Rajaraman, Senator:
Anninos, Freedman, T'samis,
Woodard) Do they destabilize DS

or relax CC!

» Starobinsky (1986):"Stochastic
Inflation”’ to understand scalars. Can
we derive 1t clearly?

LT

North Pole

7-

Penrose diagram of DS
Past and future infinrties are spacelike
Observer only has causal contact in triangle

South Pole



CARTOON HISTORY OF AN IR-SAFE UNIVERSE

* Regulate by starting De Sitter at a finite time.

FRW DS

- Modes that never get inside comoving horizon are frozen
and safe = Comoving IR cutoff

28



LEADING IR DEPENDENCE

» Schematic contribution to correlator atVth order

(2)

gV /77 dnV) /n dn) / d>ky / dkp_y
A 1/kIR (HU(V))4 1/kIR (Hn(l))4 i (27T)3 kKir (27T)3

(¢(n,0)™)

* Tracking kir dependence, find it In lower integration limits

7



eC URE LAT E-1IME DIVERGENGSS

e | | ey Inhomogeneous
an |’Ferat|ve y solve classica free theory S
equations of motion and correct solution accounts for { :

action / Quantum Noise : :
DA
82 Tt k2 = V/
21— ~0,61 + k6 = Hn /

D) — y GRa:y m"XX"'

( : ,

* All dangling ¢po sewn up In free-

theory two-point functions, G+ Draw all possiblg/trees that touch every
vertex and at/least one external point

* (o) in is the same function with | | |
and without quantum noise in o Pair (o with ={ (N5 AUBES

30



PERSISTENT FIRST
ORDERNESS

* Perturbation theory corrects

dp/dt = 0 >< S

* We solve to all orders,

Quantum

. . Noise
b= V(@) + o N

7 P

* Can we revive acceleration?

1 ] Effective interaction A2¢p2n-2,

e ol
¢ = 0:(¢) = O [ 3HV (¢) Always beaten by original by a log

1 / !/
= @V (®) V() .




PARTON SHOWER UNIVERSE

.—>.

Hubble Patch at scale k

(P

Hubble Patch at scale k+dk
(Must account for quantum fluctuation)

(¢, k + dk]|? D¢ Do Plo] [[¢°, k]|* 6[¢ — ¢° — Adetassical(¢°) — 0

\/T/' What are implications for?

P “Splitting . Holography
PDF S i3 .
Function . IR stability of gravitons
Emergence of timelike dimensions
Classical Universe from Quantum
fluctuations
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