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Introduction
—Massless )\ gb4 is IR-divergent in dS:

—Why do we care?

—1) This 1s somewhat embarrassing



Introduction
—Massless )\ §b4 is IR-divergent in dS:

—Why do we care?

—2) It could have phenomenological consequences, for example to Black Holes from

inflation, or to non-Gaussianities




Introduction
—Massless )\ §b4 is IR-divergent in dS:

—Why do we care?

—3) Since 1nflation i1s most probably the theory of the early universe, we should be able

to understand its radiative corrections

* For single-field inflation, we have a satistfactory and complete understanding
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Logarithmic Running
After S. Weinberg 2008 had begun the exploration,

finding log (% /1)

), Ht , log(kL)

* but not for non-derivatively coupled multifield
see KITP video of 2015 String Program
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—3) Since 1nflation i1s most probably the theory of the early universe, we should be able

to understand its radiative corrections

* For single-field inflation, we have a satistfactory and complete understanding
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Out-of-Horizon time-dependence:
absent, to all loops

* but not for non-derivatively coupled multifield
see KITP video of 2015 String Program



Introduction
—Massless )\ §b4 is IR-divergent in dS:

—Why do we care?

—3) Since 1nflation i1s most probably the theory of the early universe, we should be able

to understand its radiative corrections

* For single-field inflation, we have a satistfactory and complete understanding

() D log (5) Ht, log(kL)

.,

Logarithmic dependence on IR-cutoff of the universe:
absent once define observable quantities.

* but not for non-derivatively coupled multifield
see KITP video of 2015 String Program



Introduction

—Massless )\ gb4 is IR-divergent in dS:

—Why do we care?

—4) Quantum-enhanced expansion and eternal inflation
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Introduction
—Massless )\ gb4 is IR-divergent in dS:

—Why do we care?

—4) Quantum-enhanced expansion and eternal inflation
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Introduction
—Massless )\ gb4 is IR-divergent in dS:

—Why do we care?
—4) Slow-Roll Eternal Inflation

* This 1s a different application: let us elaborate
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Slow-Roll Eternal Inflation

* The spacetime becomes stochastic Standard

Eternal
[ A A
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* Much more radical quantum effect on spacetime than the Black-hole evaporation

* Discovered 1n the 80’s, we provided a first rigorous quantitative understanding
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Slow-Roll Eternal Inflation

e Initial discovery and our quantitative understanding were based on a so-called Stochastic

equation for inflationary fluctuations proposed and developed by Starobinsky in the 80’s.

e Probability distribution of the quantum fluctuations satisfies a Fokker-Planck equation.

a 82 a Starobinsky, 1980°s

7 PO®) = H 5 PO() + 5o (V/(0() P(6(7)))

ot 96(7)
\4\ f\._w\/ 6 /\/ t@

Dr ¢

<

e This same equation is able to solve non-perturbatively )\q34 in dS

e Lacking: a satisfactory derivation, an understanding of if this 1s a toy model or the leading

expansion in “something’, and, if it 1s the second, if it can be made a precise approach.



. Both Summary of Introduction

—Massless A ¢4 in dS
—Slow-Roll eternal inflation
* are non-perturbative phenomena

. . O 02 9,
e The Stochastic equation — P(4(7)) = H? Plo(Z
quation =% P(0()) = H* 57 P(0() +

—might provide a way to solve for them

—lacks a systematic derivation and proof of accuracy

 We will prove that that equation 1s the leading-order truncation of a generalized equation,

from which we can derive arbitrary accurate results.

— Proving the existence slow-roll eternal inflation

4
_Solving A @ inrigid de Sitter



Iet us start



Secular-divergencies

—Consider a free massive field in dS

- 12
2 —3Ht (1) k Ht
~ H — ~J

— Assuming the mass 1s small:

, H2 2 ]@
o)~ 5 (1+ s (o))
k _H?

—This perturbative expansion breaks at late times ~ € m?

a(t)H

e This is the answer we would have gotten if we had treated the mass as a perturbation:

q’5+3Hq5+§—z¢:m2¢ = ¢(1)~/dt Yk m2p 0 (') ~ ¢<O>ﬁ2m
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Secular-divergencies

—Consider a free massive field in dS

- 12
2 —3Ht (1) k Ht
~ H — ~J

— Assuming the mass 1s small:

o7 - (1 g 10g<a<tk>H>>

—This perturbative expansion breaks at late times ~ e m2

a(t)H

e This is the answer we would have gotten if we had treated the mass as a perturbation:




Secular-divergencies

: 4
—Now, consider massless A @

—Solving perturbatively

k? 1
¢k+3H¢k+ — o = Ny = ¢() /dt S—HA o) ’l,

— At loop one level:

(62) 5 (606 ~ / it <<g\bj>>2><¢§f\>/¢;“>> gy

—secular divergent

e Not just some simple mean field term:
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Secular-divergencies

: 4
—Now, consider massless A @

—Solving perturbatively

/CQ / 1
Hovatos S 3ol = o~ [ Lapom,

— At loop one level:

(62) 5 (606 ~ / it <<g\bj>>2><¢§f\>/¢$>> gy

—secular divergent

e Not just some simple mean field term:

@) > 4(6) )~ 02 ([ a) 0P 606D 6PV HD) ~ 3ot
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Secular-divergencies

—Rigorous calculation (see for example Burgessetal. 0912 )

- t
T exp (—fzf / dt" H(t")
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(O(t)) = <m :Texp (z [ | dt’H(t'))
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Intuition
—What 1s going on?

Expanding Long Wavelength Horizon Crossing V — )\ ¢4
Fluctuation Short. Wavelength A

\\\\\ Fluctuations
\

_ ___— Reheating Surface
Time

Quantum jumps 0¢ ~ H

Classica
Drift

€ >
H
Qbeq ~ /4

—there 1s an O(1) change to perturbative evolution: => solution is non perturbative

— We expect a diffusion-upwards, stopped by a drift-downwards, reaching a sort of

equilibrium distribution with

H

EnergyNH — V(¢) :)\¢4 NH4 :>¢N W

—How to obtain a rigorous calculation? with arbitrary precision?



A Generalized Stochastic Approach

— We are going to define a rigorous formalism to solve the problem, that, at zeroth order in
all the expansion parameters we will identify and introduce, reduces to the remarkable

Stochastic approach of Starobinsky.

e Two crucial simplifications, around which we will expand, that allow us to solve a non-

perturbative quantum problem 1in rigid curved spacetime.



A Generalized Stochastic Approach

—Two crucial expansion parameters:

—(1): outside of horizon, gradients are negligible. We can expand around an exactly local-in-

space evolution.

—(2): perturbativity of coupling constant: ALl = \/X < 1

Expanding Long Wavelength Horizon Crossing
Fluctuation Short Wavelength




A Generalized Stochastic Approach

—Main 1dea:
A Energy

—— 4 Time

Usual Peturbative Treatment

e H

‘ Simplified non-Peturbative Treatment

—separate long and short modes at an artificial fixed physical scale:
e in terms of wavenumbers it is a time-dependent scale k = A(t) = ea(t)H , <1
* modes move from “short’ to "long’

—for short modes: use usual quantum perturbation theory: A\t ~ \ log e < 1

[Texp (z‘ /tt dt’H(t’))] O(t) [Texp (_«; /tt dt’H(t’)>] in>

—for long modes, use the helps of the two expansion (1,2) above: expansion in

e<1l, A<l

(O(t)) = <m




A Generalized Stochastic Approach

—Main 1dea:
A Energy

—— 4 Time

Usual Peturbative Treatment

e H

‘ Simplified non-Peturbative Treatment

—With time, modes pass from “short’ to “long’ regime.

1
— Can choose: \F)\loge <l = e " <Kex

— —> gradient and quantum corrections can be made much smaller than /) corrections



What we wish to compute

— We wish to compute <¢(gjl) C. ¢(xn)>

—Given by:

(B(1) . . () /Dw* o(a) = [ D6 Plo] o

-with P¢] = " |o|¥[¢

—Formally, we could do the integral over the intermediate points:

(B(z1) ... $(z2)) =/d¢1...d¢n P(61,....0n) 61 ... 0n

—where

P(61,-.00) = [ Do8V (1 = 6(@1)) .. 00(6, — 8(z.)) Pl
—hard to compute P|¢| , and then to make such functional integral.

—Our strategy: find an equation that is satisfied by P (¢1, Cee ¢n)



Solving for the field density

—Let us start with P — PU*|H| W , which satisfies the following equation:
¢ oV

(3‘ng,t] _ 5;(1_5) (xp[¢, t]*&;(f)\ll[gb,t] — U[o, t] 55@) ¥ (6, t]>

—which 1s functional and not even closed.

—But we actually can compute the wavefunction in dS, in some sense.

—This will allow us to manipulate this equation.



Solving for the wavetunction
—Relevant literature has already emphasized how to compute the wavefunction in dS. For

Arkani-Hamed et al. ..., 4 : g
example 2017, 2018, ... For )\¢ *  Anninos, Anous, Freedman, Kostantinidis, 2015

Z%\p[gb,t] = H -_Z_gb Qb t [Qb, t] — \IJBD ¢7 /Dg& e’ 9

—Perturbative structure 1s extremely different than for correlation functions, because of the

different boundary conditions the propagators have. Two propagators:
—Bulk-to-Bulk: G(11, 12, k;n)
—Bulk-to-Boundary (the "transfer function’): K (7717 k; 77)

—Both propagators are regular for £ —> () , so there are no IR-divergencies (of course,

they come back once one tries to compute correlation functions of ¢ )

| B A




Perturbativity of Wavefunction

log ¥pplo,n) Z/{ e [ — + L + >k (Mog(—km))L]

)
+A gbg? [ (1+4) ) klog (—kim) (Alog (— /-cjn))’?]
1.\6
+ 2?2 ¢$§ [ +i) Yk (log (—kin))? (Mog (— /@n))L] +
b AT gbgc;E [ (1+1) Zk3 log (— ()\log( k]n))L]—F...}

—Inspection of diagrams allow to prove the form upstairs, and that, upon assuming that

1
T \1/4

— all terms are hierarchically organized in \/X

—We can perturbatively compute: 0 o -
s Vel = To@)]v o

—But we cannot compute correlation functions with it




Solving for the field density

—Backto P [¢] =4 [¢]\IJ[¢] , which satisfies:

P, t] 6 . 0 B -
ol o (Vo vl - Wio. o)
—we Just established that we can compute 0 o
Jtebished e " et = He@)ele
~let us set up to compute P (¢pq, ..., P, )

—and then <¢ . ¢>



Our Strategy

—Separate treatment for long and short modes: short are perturbative, long are local.

o) = [ ) 7o) + [ 5 (1= o) 7GR) = )+ 04(0)
i (o)~ | 1 fork <A
Al 0 for k> (1+8)A(t).
_Q /N

—smooth and wide enough A(t) — E&(t)H A

1

2N y| :
e 2 L5 <<V, N
— Effective long Density Function 'I

AN N(+§) K

] e -
Py, t] /qu 0 | Pe(T) —/ Pk e™To(k)| Plo,t]




Effective Quasi-Probability for long modes

—QG1ven:

Py, 1] = / Dé 5

D

A(?) N
) / Pk R | Plo,t

— Find the effective time-evolution for the probability of the long modes

OF; ¢y
ot

— Drift:

i A(t) ,
Drift — / Do 5 | 60() — / Pl R

_ W
= [Dos |outa) - [ dk o

= Drift + Diff.

A

AN

Quantum jumps 0¢ ~ H

| aP[e, 1]

ot

(il 5 v10] ~ Wlol ;0706



Effective Quasi-Probability for long modes

—QG1ven:

Pyl t] = / ‘

T

) _/ dSk ezk-x¢(k

)| Diot

o

Keep ‘ng modes fixed

— Find the effective time-evolution for the probability of the long modes

OF; ¢y
ot

— Drift:

Drift = / Do o

_ W
= [Dos |outa) - [ dk o

= Drift + Diff.

i A) -
¢g(f) _/ dgk ezk-x¢(

A

Quantum jumps 0¢ ~ H

\ /\/‘
ci@/
Drift

| aP[e, 1]

ot

(il 5 v10] ~ Wlol ;0706



Effective Quasi-Probability for long modes

—QG1ven:

Py, 1] = / Dé 5

A(t)

&k e o(k) | Plo,t]

— Find the effective time-evolution, the probability of the long modes

OF; ¢y
ot

— Drift:

i A(t) ,
Drift — / Do 5 | 60() — / Pl R

i o -
:/ch(i gbg(f)—/ d*k e™ 5900

_ Drift + Diff.
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Effective Quasi-Probability for long modes

—QG1ven:

Py, 1] = / Dé 5

— Find the effective time-evolution fosth

OF; ¢y
ot

— Drift:

i A(t) ,
IMﬁ::/D¢6qMﬁ%—/. Pl R

_ W
= [Dos |outa) - [ dk o

_ Drift + Diff.

AL e
)= [ dheFo®)| Plot

bbability of the long modes
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Effective Quasi-Probability for long modes
—Given:

A(t) -
Plont = [ Do |odd) ~ [ @ ePo(h)| Plo.d

— Find the effective time-evolution for the probability of the long modes

A
0P, |
g[t¢€] _ Drlft _|_ lef . Quantum jumps d¢ ~ H

— Drift:

_ o R
Drift = / Do § | do(T) — / Pk e (k)

_ o
_ / Do 6 | du(i) — / TR




Effective Probability for long modes

—manipulate:

I A(t) N
Drift = — / Do 6 | pe(Z) — / Bk e* T (k) 5 g (xlf[qb]* ° \D[qﬁ]—w[aﬁ]iw*[aﬁ])

5@ \" 5@ 53

= 5o [P u() - [ il (il 55 010] = Wlol 00710 ) =
B W [

I (@] =~

—Last path integral: expectation value of [] (gb) with fixed long-background.

g (o (4], )




Effective Probability for long modes

—manipulate:

—Last path integral: expectation value of ||

Drift = (<

o (1OA2)

as

0 i B
) -

(gb) with fixed long-background.

)

A>¢£ Pz[@])



Effective Probability for long modes

—manipulate:

_ .
Drift = — / Do 6 | d(i) — / Pl ()

_ 0 | = A(t)?, ik-@ -
- 55 / Do |0 / #k Fod)

_ 0 - 5 A 31, k& .
— / Do |0 / O 1olf)

W 1[g(7)]w[g]

—Last path integral: expectation value of [] (gb) with fixed long-background.

g (o (4], )




Effective Quasi-Probability for long modes

—Therefore:

= e ([ (B42)] ), )

fbative methods.

i11> :

—Expectation value over the short modes: perty

S _g

[Texp (1 [ dt’H(t’)ﬂ O(t) [TeXp (—z[ dt'H(t’))]

(O(t)) = <m

—This 1s all well since we know the functional form of

0
[Ho(x)|V|p]| = —1—=V
6] = i Vo
—Before writing that, let us do the diffusion
Jiton

= Drift + Dift.

ot



Effective Quasi-Probability for long modes

—Diffusion term: it arises because our time-dependent

Dif € [ Do 526 |60l@) — [ 'k e ™0(R)| Plo.t] >

New modes enter the long theory Keep | o modes fixed

— Finite-thickness shell of modes entering the long theory:

oy (L+8)A(E)  j3p, oo T 1 :
o) = [ o) o) N

A AQA+8) K

—Similar:

pitr. = - (<<%A¢@)>@ Pe[abe,t]) b e <<% (BoB0)) Pe{@%ﬂ)




Effective Quasi-Probability for long modes

—To all orders in  \ & € and leading in § , we obtain the following effective equation. It

1S Fokker-Planck-like, but it has differences

OPIOL by i =4
s (T (M@
Drift = 5@(5) < _Re ( 3 > A>¢£ Pﬁ[@]
| 5 o
Dt = 5@ <<_%M(x)> >¢£ Filoe.t
S <§ (A¢<f>A¢<f’>>> Péet
0pe(T)0dep(2") \ \ O be |

—tadpole-diffusion term, and in principle higher derivative terms.

—Strategy: compute these expectation values for the short modes in perturbation theory with
a given background for the long modes in expansion in At ~ A\ log e <K 1, V<1,

and solve this functional Fokker-Planck-like equation containing only long modes.



Effective Quasi-Probability for long modes

—To all orders in  \ & € and leading in § , we obtain the following effective equation. It

1S Fokker-Planck-like, but it has differences

L0 _ Drify + Dift
ot
)
Drift = —
5¢g(£€)
)
Diff. = —
5¢g(£€)
52
0¢0(T) (T

—Strategy: compute these expatio 4alues for the short modes in perturbation theory with
a given background for the long modes in expansion in At ~ A\ log e <K 1, V<1,

and solve this functional Fokker-Planck-like equation containing only long modes.



The Momentum
—We finally need 0

{o() Vo] = ~i V(o
— Wavetunction reads
vie) ~ Bxp (~ial) ( 150(0)' ~ S50l ) + Ole.Mog(hn))")
= Lio) _ O(7)> + O(e, V\) = slow — roll solution + O(e)

a’ 3H



Effective Quasi-Probability for long modes

—To all orders in  \ & € and leading in § , we obtain the following effective equation. It

1S Fokker-Planck-like, but it has differences

OPIOL by i =4
s (T (M@
Drift = 5@(5) < _Re ( 3 > A>¢£ Pﬁ[@]
| 5 o
Dt = 5@ <<_%M(x)> >¢£ Filoe.t
S <§ (A¢<f>A¢<f’>>> Péet
0pe(T)0dep(2") \ \ O be |

—tadpole-diffusion term, and in principle higher derivative terms.

—Strategy: compute these expectation values for the short modes in perturbation theory with
a given background for the long modes in expansion in At ~ A\ log e <K 1, V<1,

and solve this functional Fokker-Planck-like equation containing only long modes.



One-location



Effective Probability

—Expand 1n number of locations, as evolution 1s quasi local, thanks to dS (this is the

opposite of what we do for perturbative theories in Minkowski).

—One-location probability distribution:

Poa(0u(#) = 61) € [ Do 60 [gn — gu(@)] Pl

Keep long fields at one point fixed



Effective Probability

—Expand 1n number of locations, as evolution 1s quasi local, thanks to dS (this is the

opposite of what we do for perturbative theories in Minkowski).

—One-location probability distribution:

Por(66(71) = 1) = / Dy 60 (61 — 6u()] Pl

—Resulting equation:
OPp(pr,t) 10° (/0 .y 0 [1(¢(21))
ot 208 <<8tA¢(x1) >¢1 P“(qﬁ“t)) D¢y <<[ a2 ]A>¢1 P“(gbl’t))

— We dropped the term < (—gAqﬁ(f)) > because it will not contribute at the order at
be

ot
which we will compute.

—Expectation value of the short modes on the long depends only on the field at the same

location



Effective Probability

—Expand 1n number of locations, as evolution 1s quasi local, thanks to dS (this is the

opposite of what we do for perturbative theories in Minkowski).

—One-location probability distribution:

Por(6o() = ) / Dby 50 [y — o] Polore

D1ffus10n Drift

—Resulting equation'

OP(6,ty” TP (/0
Ot 28¢2 << naE )>¢1 fralen ‘*’3 [ ]A>¢1 Pg,l(gbh

e

0

— We dropped the term < <_§A¢@> > because it will not contribute at the order at
be

which we will compute.

—Expectation value of the short modes on the long depends only on the field at the same

location



—Compute various ingredients, assuming counting ¢, ~

e Obtain

Solving at one-location: leading order

1
NI

OF;1(91)

ot = L', Pr1(91,1) (1 + (’)()\1/2’ S, E2))

po 0 iqbg H? O
*T 96 \3H ) " 8720¢?




Solving at one-location: leading order

OP;1(¢
Egt( : = L4, Pra(¢1,1) (1 + (9()\1/2, J, 62))

o (A .\ H® o
Y= s (3H¢ ) MR

—The famous Starobinsky equations, but now rigorously derived with control of

approximation and we can include them.

—There 1s an equilibrium, i.e. solution:
A 3
Peq ~ ¢ HA
1
H

— ¢l ~ W . SO our counting 1s correct: Self-conswtency

—Static solution 1s the one corresponding to the BD vacuum
—time-dependent solutions decay P(¢1)

e suggesting stability and attractor

Pl



Solving at one-location: sub-leading order

— We start again from

25 =i (o) ) 35 (572, o)

—with counting ¢, ~ HA Y4 ¢, ~ H,

—and compute to next order the various expectation values

- : <[-_--<¢<fl>>]A>¢l = 26— 2t = 2 0@+ misy

ot . . . A H2
sixtic potential and a mass from short modes on longs: < 5 (x’f)2> - log e + H2Vj |
-

— : mass induced from long modes on shorts: () mg — 3 )\gb%

20m?
(1 + loge VP ) + O(\)

(3Fod(-Fot)) =1



Solving at one-location: sub-leading order

—Summary so far:

25 =i (o) ) 35 (572, o)

—where

(
(




Solving at one-location: sub-leading order

—Summary so far:

25 =i (o) ) 35 (572, o)

—where

dependence on

0 « .-
gy A¢($ 1 ) ’ = H ° log e
ot b1 M’ 1s unphysical




Subleading order

—Solve the same equation, including subleading terms:

272 Ag? ¢2 4% m?
P{%(¢1) = Ne™ an’ (1—A (1og<e/2> ¥ (3/2) + =3 )\H2>+

e (2 - v /2 - §) + o)

=  (¢(2)") = /dgbl Py oo(¢7) @7 = depends on log(e) unphysical!

— Ok, as <¢l(f)n> is UV sensitive
—What is physical is <¢(f)n> — <(¢S(f) + ¢l(f))n>

—Counting: ¢, ~ H ~ ¢y - )\1/4 = 5~V



Subleading order

—Solve the same equation, including subleading terms:

272 Ap]

Py*(¢1) = Ne ™ 3i?

/ 472 m?
7 (198(€/2) =0 (3/2) + AH2>+
1

O(A - N2 AM?) | 89 AHqél (108; (€/2) =¥ (3/2) — %) + O()\)>

=  (¢(2)") = /dgbl Py oo(¢7) @7 = depends on log(e) unphysical!

— Ok, as <¢l(g_3’)n> is UV sensitive
—What is physical is <¢(f)n> — <(¢S(f) + ¢l(f))n>

—Counting: ¢s ~ H ~ ¢l ' )\1/4 — — ~ VA



Subleading order

—Solve the same equation, including subleadmgter'

47.‘.2 — 2
3 )\H2>+

0B/ - ) +om)
S (G@ = / 46, Pr.q(d1) 8} = depends on log(€) unphysicat

~Ok,as (ghy()") is UV sensitive

~What is physical is  (P(Z)") = ((¢s(Z) + ¢u(Z))")

—Counting: ¢s ~ H ~ ¢ - A = =V



Result for 1-location

—Using 272 2p 4% m

2 2 =2
P (¢1) = Ne™ 3u? (1_)\% (log(e/2)—w(3/2)—|— 5 )\H2>+

7T2 2 16
+ 89 AH(’? <log (e/2) — 1 (3/2) — é) + O(A))

~Obtain  (p(T)") = ((ds(X) + dy(Z))")

(a2 Y (3 (gﬁ)) m{ |

— log(e) cancelled!




Result for 1-location

—Using 272 2p 4% m

2 2 =2
P (¢1) = Ne™ 3u? (1_)\% (log(e/2)—w(3/2)—|— 5 )\H2>+

7T2 2 16
+ 89 AH(’? <log (e/2) — 1 (3/2) — é) + O(A))

3
4

— log(e) cancelled!



Result for 1-location
—Using 2n2 2 (

414 m

1AL (log(e/2) v (3/2)+ 7 )\;{2>+

7T2 2 16
+ 89 AH(’? <log (e/2) — 1 (3/2) — é) + O(A))

-Obtain - ((7)") = ((¢s(T) + & (T))")

(ot = xsm (2) Wi((

—-3/2,_—n—1 ~ 2
VA0 F(T)Q ((3—24#”‘ —n(2—487T2V2)>F(
4

(a2 Y (3 (gﬁ)) m{ |

ancelled!

P*(¢1) = Ne™ st




2-locations



2-locations n-point function

—Analogous Fokker-Planck-like equation for the distribution at 2-points:

0 , 0?

EP2(¢17 ¢2, AZC,t) m— (F¢1 -+ F¢2) P2 —|—j() (GQ(t)HALC) a¢15’¢2p
% 52 g

where §P1(¢1,t) — F¢1P1 a¢2 P1 | ¢1 (V (¢1)P1>

—Last term strongly depends on distance

Early times j5 ~ 1 Crossing Region ¢ ~ H ! Late times jg ~ 0

- . e < -

1
()AfﬂNe—H




2-locations n-point function

—Analogous Fokker-Planck-like equation for the distribution at 2-points:

9, 0”
— P Az, t) = (T RN | t)HA P
at 2(¢17 ¢27 Qf, ) ( ¢1 .‘ (Ea( ) I‘) 8¢1a¢2 2
here D Py(61,4) = T P = 2 P+ -0 (V(4n)P)
where — |
Ot 1\%1, o141 — a¢% 1 a¢1 141
—Last term strongly depends on distance
Early times 7y ~ 1 Crossing Region t ~ H~! Late times jp ~ 0
a(t) A ~

eH




2-locations n-point function

—Analogous Fokker-Planck-like equation for the distribution at 2-points:

0 . )
—P5(¢1, 02, Az, t) = (I'y, +T'g,) Po + jo (ea(t) HAx) P
09100

ot
0 - o
where aPl((bl,t) =1y, P = 057 11 - Do (Vi(p1)P1)

—Last term strongly depends on distance

Early times j5 ~ 1 Crossing Region ¢ ~ H ! Late times jg ~ 0
€ € > €
1
t)Ax ~ —
a(t) 77




2-locations n-point function

— Analogous Fokker-Planck-like equation for the distribution at 2-points:

0 -

— P Ax.t)= (s +1..) P + 95 (ea(t) HAx P
at 2(¢17¢27 9 ) ( P1 ¢2) 2 ]O( ( ) )a¢18¢2 2
—Last term strongly depends on distance
Jo © Balytimesjy~ 1 Crosing Region t ~ H! ~ Late times jo ~ 0 ‘
/_\\_)‘

— At early times, solutions is P2(§b17 sza tearly) ™~ 5(1)(§b1 — §b2) Peq,1(§b1)

— At late times 1S P2(¢17 ¢27 tlate) ™ Pl,a(¢1p tlate) Pl,b(¢2 tlate)
—Time scale of diff equation is -1 / VA , but crossing time [ -1 < H -1 / \/X

— —> glue using sudden perturbation theory’, which corresponds to expansion in \/X



de Sitter invariance

—Analogous Fokker-Planck-like equation for the distribution at 2-points:

0 , 0?
_P2(¢1> P2, Axv t) — (F¢1 + F¢2) P+ jo (ea(t)HAa:) Py
0p10¢2

ot

—Last term strongly depends on distance

Jo
Early times jp ~ 1 Crossing Region ¢ ~ H™! Late times j9 ~ 0

t

—Solution is non-perturbative and de Sitter invariant.

CTOEr, )6 (&, 12)"™) = fom 2

" where 2% = cosh(ty 4 ty) — H2eH M)z, — 7,



de Sitter invariance

—Correlation functions at different spacetime-points

—under perturbative control: decay at long distances,

(T2, 11)"(Tas 12)™) = fam(2)~ 27V 2 = o0
where 2% = cosh(t; +to) — H2et2)| 7 — 7

* In general

(D(T1,t1)™ ... (T, tn)"™) — (D(T1) " )eq -+ - (D(Tn)"™)eq

 signaling stability of dS

e compute subleading /) corrections, finding again that log(e) cancelled.



State Independence

—Our construction so far uses the \IJBD [¢> 77]

— What happens for other states? We can consider states of the form

e with BD boundary conditions.
e —> correlation functions in these states are higher-points correlation functions in BD.
— = their decay implies stability of dS in these states.

— = if we keep the dS distance among the points of the original correlation function
fixed while sending the insertion of the operators at earlier times, correlation functions

converge towards the ones computed in BD:

<§b(fla tl)nl e ¢(fna t’n)nn> — <§b(fla tl)nl e Qb(fna tn>nn>eq

ti—t0—>—OO

e = BD vacuum is an attractor



Thermality

—Correlation functions at different spacetime-points

(D(Z1,t1)" 0 (T2, 12)™) = fam(z) ~ Z_\/X, Z — 00

H
—Restricted to static patch, they satisfy thermality with Zds = o

*1.e. the KMS condition - certain periodicity in

imaginary time

(d(z1,t1)P(T2, ta + L5 ) = (H(z2, t2)d(z1,t1))

* Not obviously true, since the leading term by itself does not satisfy it. KMS

condition requires particular coefficient.of.the subleading term:

, which we also computed.



Conclusion

—We have developed a formalism to compute correlation functions of \ ¢* in dS
—manifest expansion in \/X L e & &
—the solution 1s remarkably non-perturbative, and yet we can solve it:
—Equilibrium & Stability:

(P(X1,t1)" ... (T, tn)"™) — (D(X1)" )eq - - (D(Zn)"™)eq, Fort; — oo, fixed z;
—State-independence:

(D(Z1,t1)" .. (X, tn)"™™) — (P(Z1,t1)™ ... d(Zn,tn)"™)eq, for ti—ty — 00, 21 = fixed
—de Sitter invariant
—Thermal in static patch

e all radiative corrections in rigid dS and inflation are understood, and well behaved

—no 1nstability in the rigid limit with Zaldarriaga JHEP 2010, JHEP 2012,
JCAP 2012, JHEP 2013
with Pimentel and Zaldarriaga JHEP 2012

& this work

» Existence of slow-roll eternal inflation 1s close to rigorously established.



