Dark energy after gravitational wave observations

Filippo Vernizzi IPhT - CEA, CNRS, Paris-Saclay

with Paolo Creminelli 1710.05877, + Matthew Lewandowski and Giovanni Tambalo, 1809.03484 + Vicharit Yingcharoenrat, 1906.07015, 1910.14035

> 22 June 2020 Online "Newton 1665" seminars

Motivations

- General relativity is very well tested on Solar System scales
- Its validity is extrapolated on larger scales

Post-Newtonian parametrization

Table 4: Cu	irrent limits o	on the PPN	parameters.
-------------	-----------------	------------	-------------

Parameter	Effect	Limit	Remarks
$\gamma - 1$	time delay	$2.3 imes 10^{-5}$	Cassini tracking
	light deflection	$2 imes 10^{-4}$	VLBI
$\beta - 1$	perihelion shift	$8 imes 10^{-5}$	$J_{2\odot} = (2.2 \pm 0.1) \times 10^{-7}$
	Nordtvedt effect	$2.3 imes 10^{-4}$	$\eta_{ m N} = 4eta - \gamma - 3$ assumed
ξ	spin precession	4×10^{-9}	millisecond pulsars
α_1	orbital polarization	10^{-4}	Lunar laser ranging
		4×10^{-5}	PSR J1738+0333
α_2	spin precession	2×10^{-9}	millisecond pulsars
α_3	pulsar acceleration	4×10^{-20}	pulsar \dot{P} statistics
ζ1	—	2×10^{-2}	combined PPN bounds
ζ_2	binary acceleration	4×10^{-5}	$\ddot{P}_{ m p}$ for PSR 1913+16
ζ3	Newton's 3rd law	10^{-8}	lunar acceleration
ζ_4	_	—	not independent [see Eq. (73 🔵)]

Motivations

- On large scales, constraints are weaker
- No measured deviations from ACDM (caveat H0 tension), but dark sector not well understood

Motivations

- On large scales, constraints are weaker
- No measured deviations from ACDM (caveat H0 tension), but dark sector not well understood

- Is ACDM the ultimate model or the simplest approximation given the current precision of data?
- Is there new physics on very large scales?

Cosmological precision tests of ACDM

GW observations

- severely constrain cosmological modifications of gravity
- dramatically reduce the parameter space of scalar-tensor gravity (self-accelerating and screening) and the discoverypotential of new physics in LSS surveys

Generalized scalar-tensor theories

$$\mathcal{L} = G_{4}(\phi, X)R + G_{2}(\phi, X) + G_{3}(\phi, X)\Box\phi \qquad \Box\phi \equiv \phi_{;\mu}^{;\mu} \quad X \equiv g^{\mu\nu}\phi_{;\mu}\phi_{;\nu}\phi_{;\mu}\phi_{;\nu}$$
$$- 2G_{4,X}(\phi, X) \Big[(\Box\phi)^{2} - (\phi_{;\mu\nu})^{2} \Big] \\+ G_{5}(\phi, X)G^{\mu\nu}\phi_{;\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X) \Big[(\Box\phi)^{3} - 3\Box\phi(\phi_{;\mu\nu})^{2} + 2(\phi_{;\mu\nu})^{3} \Big] \\- F_{4}(\phi, X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\mu'\nu'\rho'\sigma}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'} \\- F_{5}(\phi, X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\mu'\nu'\rho'\sigma'}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'}\phi_{;\sigma\sigma'}$$

Generalized scalar-tensor theories

$$\mathcal{L} = G_{4}(\phi, X)R + G_{2}(\phi, X) + G_{3}(\phi, X)\Box\phi \qquad \Box\phi \equiv \phi_{;\mu}^{;\mu} \quad X \equiv g^{\mu\nu}\phi_{;\mu}\phi_{;\nu}$$
$$- 2G_{4,X}(\phi, X) \Big[(\Box\phi)^{2} - (\phi_{;\mu\nu})^{2} \Big] \\+ G_{5}(\phi, X)G^{\mu\nu}\phi_{;\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X) \Big[(\Box\phi)^{3} - 3\Box\phi(\phi_{;\mu\nu})^{2} + 2(\phi_{;\mu\nu})^{3} \Big] \\- F_{4}(\phi, X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\mu'\nu'\rho'\sigma}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'} \\- F_{5}(\phi, X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\mu'\nu'\rho'\sigma'}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'}\phi_{;\sigma\sigma'}$$

Self-acceleration and screening: large classical scalar field nonlinearities

GW150914: Gravitational Waves

Abbott et al. '16 first detection: 09/14, 2015

Gravitational wave equation

Gravitational wave equation:

$$ds^2 = -dt^2 + a^2(t) \left[\delta_{ij} + \gamma_{ij}\right] d\vec{x}^i d\vec{x}^j , \qquad \gamma_{ii} = 0 = \partial_i \gamma_{ij} , \qquad H = \dot{a}/a$$

propagation

generation

Modified gravitational wave propagation

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where gravitons are absorbed and dispersed. Effects accumulate on long time-scale.

$$\ddot{\gamma}_{ij} + \left[(3 + \alpha_{\mathrm{M}})H + \Gamma(k) \right] \dot{\gamma}_{ij} + \left[c_T^2 k^2 + f(k) \right] \gamma_{ij} = 0$$

Modified gravitational wave propagation

 $\mu =$

Modified gravity spontaneously breaks Lorentz Invariance. Acts like a medium, where gravitons are absorbed and dispersed. Effects accumulate on long time-scale.

 $H_0 \simeq 10^{-33} \,\mathrm{eV}$

GW170817: neutron star merger

Multi-messenger observation

$c_T=1$ implications

$$\mathcal{L} = G_4(\phi, X)R + G_2(\phi, X) + G_3(\phi, X)\Box\phi \qquad \Box\phi \equiv \phi_{;\mu}^{;\mu} \quad X \equiv g^{\mu\nu}\phi_{;\mu}\phi_{;\nu}$$
$$- 2G_{4,X}(\phi, X) \Big[(\Box\phi)^2 - (\phi_{;\mu\nu})^2 \Big]$$
$$+ G_5(\phi, X)G^{\mu\nu}\phi_{;\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X) \Big[(\Box\phi)^3 - 3\Box\phi(\phi_{;\mu\nu})^2 + 2(\phi_{;\mu\nu})^3 \Big]$$
$$- F_4(\phi, X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\mu'\nu'\rho'\sigma}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'}$$
$$- F_5(\phi, X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\mu'\nu'\rho'\sigma'}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'}\phi_{;\sigma\sigma'}$$

$$C_{T}=1 \text{ implications}$$

$$\dot{\gamma}_{ij}^{2} - (\partial_{k}\gamma_{ij})^{2}$$

$$\mathcal{L} = G_{4}(\phi, X)R + G_{2}(\phi, X) + G_{3}(\phi, X)\Box\phi \qquad \Box\phi \equiv \phi_{;\mu}^{;\mu} \quad X \equiv g^{\mu\nu}\phi_{;\mu}\phi_{;\nu}$$

$$- 2G_{4,X}(\phi, X) \left[(\Box\phi)^{2} - (\phi_{;\mu\nu})^{2} \right] \qquad \dot{\gamma}_{ij}^{2}$$

$$+ G_{5}(\phi, X)G^{\mu\nu}\phi_{;\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X) \left[(\Box\phi)^{3} - 3\Box\phi(\phi_{;\mu\nu})^{2} + 2(\phi_{;\mu\nu})^{3} \right]$$

$$- F_{4}(\phi, X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\mu'\nu'\rho'\sigma}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'}\phi_{;\sigma\sigma'}$$

 $c_T^2 - 1 \propto -2G_{4,X} - G_{5,\phi} - (H\dot{\phi} - \ddot{\phi})G_{5,X} + XF_4 - 3HX\dot{\phi}F_5$

$c_T=1$ implications

$$\mathcal{L} = G_4(\phi, X)R + G_2(\phi, X) + G_3(\phi, X)\Box\phi \qquad \Box\phi \equiv \phi_{;\mu}^{;\mu} \quad X \equiv g^{\mu\nu}\phi_{;\mu}\phi_{;\nu}$$
$$- 2G_{4,X}(\phi, X) \Big[(\Box\phi)^2 - (\phi_{;\mu\nu})^2 \Big]$$
$$+ G_5(\phi, X)G^{\mu\nu}\phi_{;\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X) \Big[(\Box\phi)^3 - 3\Box\phi(\phi_{;\mu\nu})^2 + 2(\phi_{;\mu\nu})^3 \Big]$$
$$- F_4(\phi, X)\epsilon^{\mu\nu\rho}\sigma\epsilon^{\mu'\nu'\rho'\sigma}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'}$$
$$- F_5(\phi, X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\mu'\nu'\rho'\sigma'}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'}\phi_{;\sigma\sigma'}$$

$$c_T^2 - 1 \propto -2G_{4,X} - G_{5,\phi} - (H\dot{\phi} - \ddot{\phi})G_{5,X} + XF_4 - 3HX\dot{\phi}F_5$$

Most general theory compatible with c_T=1: $G_5 = F_5 = 0$, $XF_4 = 2G_{4,X}$

Creminelli, FV '17; Sakstein, Jain '17; Ezquiaga, Zumalacarregui '17; Baker+ '17

$$\delta c_T \sim (\Lambda_3/\Lambda_2)^4 \sim 10^{-40} \ll 10^{-15}$$
 c_T=1 tuning is stable

Can we rule out more?

$$\mathcal{L} = G_4(\phi, X)R + G_2(\phi, X) + G_3(\phi, X)\Box\phi \qquad \Box\phi \equiv \phi_{;\mu}^{;\mu} \quad X \equiv g^{\mu\nu}\phi_{;\mu}\phi_{;\nu}\phi_{;\nu}\phi_{;\nu}\phi_{;\mu}\phi$$

Can we rule out more?

$$\mathcal{L} = G_{4}(\phi, X)R + G_{2}(\phi, X) + G_{3}(\phi, X)\Box\phi \qquad \Box\phi \equiv \phi_{;\mu}^{;\mu} \quad X \equiv g^{\mu\nu}\phi_{;\mu}\phi_{;\nu}\phi_{;\mu}\phi$$

Forecasted constraints from the large-scale structure

$$|\alpha_H| \lesssim 10^{-2} \qquad |\alpha_B| \lesssim 10^{-2}$$

Expanded action for α_H

Graviton decay into dark energy

Creminelli, Lewandowski, Tambalo, FV '18

$$\mathcal{L}_{\gamma\pi\pi} = \frac{\alpha_H}{\Lambda_3^3} \ddot{\gamma}_{ij}^c \partial_i \pi_c \partial_j \pi_c$$

 $\Lambda_3 \equiv (M_{\rm Pl}H_0^2)^{1/3}$

Beyond Horndeski interactions imply GW decay into scalar fluctuations π . Analogous to light absorption into a material

Decay allowed for $c_s < 1$ ($c_s = sound speed of \pi$ fluctuations; assume $c_T=1$)

irrelevant for LSS observations $\alpha_H \lesssim 10^{-2}$ (unless c_s=1 with great precision)

decay rate

Coherent decay

Decay enhanced by the large occupation number of the GWs ~ preheating

Classical wave:
$$\gamma_{ij} = M_{\rm Pl} h_0^+ \cos(\omega u) \epsilon_{ij}^+$$
, $\beta = \frac{|\alpha_H|}{\alpha c_s^2} \left(\frac{\omega}{H}\right)^2 h_0^+$

Oscillator with changing frequency:

$$\ddot{\pi} - c_s^2 \left[\nabla^2 + \beta \cos(\omega u) \epsilon_{ij}^+ \partial_i \partial_j \right] \pi = 0$$

Coherent decay

Decay enhanced by the large occupation number of the GWs ~ preheating

Classical wave:
$$\gamma_{ij} = M_{\rm Pl} h_0^+ \cos(\omega u) \epsilon_{ij}^+$$
, $\beta = \frac{|\alpha_H|}{\alpha c_s^2} \left(\frac{\omega}{H}\right)^2 h_0^+$

Oscillator with changing frequency:

$$\ddot{\pi} - c_s^2 \left[\nabla^2 + \beta \cos(\omega u) \epsilon_{ij}^+ \partial_i \partial_j \right] \pi = 0$$

Each Fourier mode satisfies a Mathieu equation \Rightarrow parametric resonance.

$$\frac{d^2\pi_{\vec{k}}}{d\tau^2} + (A_{\vec{k}} - 2q_{\vec{k}}\cos(2\tau))\pi_{\vec{k}} = 0$$

Resonant modes grow exponentially: $\pi_{\vec{k}} \sim e^{\mu_{\vec{k}} \tau}$

Narrow resonance $\beta \ll 1$: $\mu \sim \beta/4 \Rightarrow \rho_{\pi} \propto e^{\beta \omega u/4} \Rightarrow \Delta \gamma_{ij} \propto v \gamma_0 e^{\beta \omega u/4} \epsilon_{ij}^+$

Same direction and polarization. Same frequency + higher harmonics (precursors)

GW modification

Expanded action for α_{H}

$$\mathcal{L} = \frac{1}{2} \left(\dot{\pi}^2 - c_s^2 (\partial_k \pi)^2 \right) + \frac{1}{4} \left((\dot{\gamma}_{ij})^2 - (\partial_k \gamma_{ij})^2 \right) \qquad \alpha_H \equiv -\frac{X^2 F_4}{G_4}$$
$$+ \alpha_H \left[\frac{1}{\Lambda_3^3} \partial^2 \pi (\partial \pi)^2 + \frac{1}{\Lambda_3^3} \ddot{\gamma}_{ij} \partial_i \pi \partial_j \pi + \frac{1}{\Lambda_3^6} (\Box \pi)^2 (\partial \pi)^2 + \frac{1}{\Lambda_2^2} \dot{\pi} \dot{\gamma}_{ij}^2 \right] \qquad E$$

$$\Lambda_2 \simeq 10^{-3} \text{ eV}$$

$$\Lambda_3 \simeq 10^{-13} \text{ eV}$$

$$\omega_{\rm gw} \simeq 10^{-14} \, {\rm eV}$$
 –

$$H_0 \simeq 10^{-33} \,\mathrm{eV}$$

GW modification

Theory after no decay

$$\mathcal{L} = G_{4}(\phi, X)R + G_{2}(\phi, X) + G_{3}(\phi, X)\Box\phi \qquad \Box\phi \equiv \phi_{;\mu}^{;\mu} \quad X \equiv g^{\mu\nu}\phi_{;\mu}\phi_{;\nu}$$
$$- 2G_{4,X}(\phi, X) \Big[(\Box\phi)^{2} - (\phi_{;\mu\nu})^{2} \Big] \\- F_{4}(\phi, X)\epsilon^{\mu\nu\rho}\sigma\epsilon^{\mu'\nu'\rho'\sigma}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'} \qquad XF_{4} = 2G_{4,X}$$
$$\bullet \text{Braiding:} \quad \alpha_{B} = \frac{\dot{\phi}XG_{3,X}}{HG_{4}}$$

$$\mathcal{L} = \frac{1}{2} \left(\dot{\pi}^2 - c_s^2 (\partial_k \pi)^2 \right) + \frac{1}{4} \left((\dot{\gamma}_{ij})^2 - (\partial_k \gamma_{ij})^2 \right) \qquad \alpha_B = \frac{\dot{\phi} X G_{3,X}}{H G_4} \\ + \alpha_B \left[\frac{1}{\Lambda_3^3} \partial^2 \pi (\partial \pi)^2 + \frac{1}{\Lambda_2^2} \dot{\gamma}_{ij} \partial_i \pi \partial_j \pi + \frac{1}{M_{\text{Pl}}} \pi \dot{\gamma}_{ij}^2 \right] \qquad \Lambda_2 \equiv (H_0 M_{\text{Pl}})^{1/2} \\ \text{Same calculation but with} \quad \beta = \frac{|\alpha_B|}{\alpha c_s^2} \frac{\omega}{H} h_0^+ \\ \text{Exponential growth quenched by large self-couplings of } \pi. \\ \text{Kills the effect? Simulations ~ preheating} \\ \text{No clear constraints on } \alpha_B \dots \qquad \Lambda_3 \simeq 10^{-13} \text{ eV} \\ \omega_{\text{ww}} \simeq 10^{-14} \text{ eV}$$

$$H_0 \simeq 10^{-33} \,\mathrm{eV}$$

$$\mathcal{L} = \frac{1}{2} \left(\dot{\pi}^2 - c_s^2 (\partial_k \pi)^2 \right) + \frac{1}{4} \left((\dot{\gamma}_{ij})^2 - (\partial_k \gamma_{ij})^2 \right) \qquad \alpha_B = \frac{\dot{\phi} X G_{3,X}}{H G_4} + \alpha_B \left[\frac{1}{\Lambda_3^3} \partial^2 \pi (\partial \pi)^2 + \frac{1}{\Lambda_2^2} \dot{\gamma}_{ij} \partial_i \pi \partial_j \pi + \frac{1}{M_{\text{Pl}}} \pi \dot{\gamma}_{ij}^2 \right]$$

The regime $\beta > 1$ seems problematic:

$$\ddot{\pi} + c_s^2 \left[k^2 + \beta \cos(\omega u) \epsilon_{ij}^+ k^i k^j \right] \pi = 0 \qquad \qquad \beta = \frac{|\alpha_B|}{\alpha c_s^2} \frac{\omega}{H} h_0^+$$

gradient instability < 0

$$\mathcal{L} = \frac{1}{2} \left(\dot{\pi}^2 - c_s^2 (\partial_k \pi)^2 \right) + \frac{1}{4} \left((\dot{\gamma}_{ij})^2 - (\partial_k \gamma_{ij})^2 \right) \qquad \alpha_B = \frac{\dot{\phi} X G_{3,X}}{H G_4}$$
$$+ \alpha_B \left[\frac{1}{\Lambda_3^3} \partial^2 \pi (\partial \pi)^2 + \frac{1}{\Lambda_2^2} \dot{\gamma}_{ij} \partial_i \pi \partial_j \pi + \frac{1}{M_{\text{Pl}}} \pi \dot{\gamma}_{ij}^2 \right]$$

The regime $\beta > 1$ seems problematic:

$$\ddot{\pi} + c_s^2 \left[k^2 + \beta \cos(\omega u) \epsilon_{ij}^+ k^i k^j \right] \pi = 0 \qquad \qquad \beta = \frac{|\alpha_B|}{\alpha c_s^2} \frac{\omega}{H} h_0^+$$

We must check whether this is true even when we include nonlinearities

- Gradient instabilities: imaginary solution of $Z_{\mu\nu}k^{\mu}k^{\nu}=0~~{\rm for}~k^{\mu}$
- Ghost instabilities: $Z_{00} < 0$

$$\mathcal{L} = \frac{1}{2} \left(\dot{\pi}^2 - c_s^2 (\partial_k \pi)^2 \right) + \frac{1}{4} \left((\dot{\gamma}_{ij})^2 - (\partial_k \gamma_{ij})^2 \right) \qquad \alpha_B = \frac{\dot{\phi} X G_{3,X}}{H G_4}$$
$$+ \alpha_B \left[\frac{1}{\Lambda_3^3} \partial^2 \pi (\partial \pi)^2 + \frac{1}{\Lambda_2^2} \dot{\gamma}_{ij} \partial_i \pi \partial_j \pi + \frac{1}{M_{\text{Pl}}} \pi \dot{\gamma}_{ij}^2 \right]$$

The regime $\beta > 1$ seems problematic:

$$\ddot{\pi} + c_s^2 \left[k^2 + \beta \cos(\omega u) \epsilon_{ij}^+ k^i k^j \right] \pi = 0 \qquad \qquad \beta = \frac{|\alpha_B|}{\alpha c_s^2} \frac{\omega}{H} h_0^+$$

We must check whether this is true even when we include nonlinearities

- Gradient instabilities: imaginary solution of $Z_{\mu\nu}k^{\mu}k^{\nu} = 0$ for $k^{\mu} \qquad \beta > 1$
- Ghost instabilities: $Z_{00} < 0$

$$\beta^2 > (1 - c_s^2) c_s^{-4}$$

Constraints for stellar-mass BHs

$$\beta = \frac{|\alpha_B|}{\alpha c_s^2} \frac{\omega}{H} h_0^+$$

 $\circ \beta > 1$: gradient inst.

$$h_0^+ \sim \frac{1}{\sqrt{2}} \cdot \frac{4}{r} (GM_c)^{5/3} (\pi f)^{2/3}$$

*
$$\Lambda_{\rm UV} \sim \frac{\alpha^{1/2} c_s^{11/6}}{\alpha_B^{1/3}} \Lambda_3$$

Gradient instability, $\beta > 1$, for α_B

Fate of instability

Is the instability real or artefact of EFT? Gradient and ghost instabilities can appear in the low energy EFT of stable UV complete theories

Fate of instability depends on the (unknown) UV completion of these theories

To trust the EFT: $|\alpha_B| \lesssim 10^{-2}$. Interestingly close to constraints from the large-scale structure

Gravitational waves probe modified gravity as light probes material In many cases very effectively, more than what large-scale structure can do

$$\mathcal{L} = G_4(\phi, X)R + G_2(\phi, X) + G_3(\phi, X) \Box \phi - 2G_{4,X}(\phi, X) \Big[(\Box \phi)^2 - (\phi_{;\mu\nu})^2 \Big] + G_5(\phi, X) G^{\mu\nu} \phi_{;\mu\nu} + \frac{1}{3} G_{5,X}(\phi, X) \Big[(\Box \phi)^3 - 3\Box \phi(\phi_{;\mu\nu})^2 + 2(\phi_{;\mu\nu})^3 \Big] - F_4(\phi, X) \epsilon^{\mu\nu\rho}{}_{\sigma} \epsilon^{\mu'\nu'\rho'\sigma} \phi_{;\mu} \phi_{;\mu'} \phi_{;\nu\nu'} \phi_{;\rho\rho'} - F_5(\phi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \phi_{;\mu} \phi_{;\mu'} \phi_{;\nu\nu'} \phi_{;\rho\rho'} \phi_{;\sigma\sigma'}$$

Gravitational waves probe modified gravity as light probes material In many cases very effectively, more than what large-scale structure can do

• Speed of GW: $|c_T - 1| \lesssim 10^{-15}$

Gravitational waves probe modified gravity as light probes material In many cases very effectively, more than what large-scale structure can do

- Speed of GW: $|c_T 1| \lesssim 10^{-15}$ Resonant graviton decay $10^{-10} \lesssim |\alpha_H| \lesssim 10^{-20}$
- Perturbative decay and dispersion $|\alpha_H| \lesssim 10^{-10}$

Gravitational waves probe modified gravity as light probes material In many cases very effectively, more than what large-scale structure can do

- Speed of GW: $|c_T 1| \lesssim 10^{-15}$ Resonant graviton decay $10^{-10} \lesssim |\alpha_H| \lesssim 10^{-20}$
- Perturbative decay and dispersion $|\alpha_H| \lesssim 10^{-10}$ Instabilities due to GW $|\alpha_B| \lesssim 10^{-2}$

$$\begin{aligned} \mathcal{L} &= G_4(\phi, X)R + G_2(\phi, X) + \frac{G_3(\phi, X)\Box\phi}{-2G_{4,X}(\phi, X) \left[(\Box\phi)^2 - (\phi_{;\mu\nu})^2 \right]} \\ &+ G_5(\phi, X)G^{\mu\nu}\phi_{;\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X) \left[(\Box\phi)^3 - 3\Box\phi(\phi_{;\mu\nu})^2 + 2(\phi_{;\mu\nu})^3 \right] \\ &- F_4(\phi, X)\epsilon^{\mu\nu\rho}\sigma\epsilon^{\mu'\nu'\rho'\sigma}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'}\phi_{;\sigma\sigma'} \\ &- F_5(\phi, X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\mu'\nu'\rho'\sigma'}\phi_{;\mu}\phi_{;\mu'}\phi_{;\nu\nu'}\phi_{;\rho\rho'}\phi_{;\sigma\sigma'} \end{aligned}$$