ELECTROWEAK-SYMMETRIC DARK MONOPOLES FROM PREHEATING

NICHOLAS ORLOFSKY

2005.00503 Yang Bai, Mrunal Korwar, NO

Newton 1665 seminar May 28, 2020

MOTIVATION

Can there be pockets of the universe with a different electroweak VEV?

Even with electroweak symmetry restoration?

Yes!

Only requirement is dark sector with two simple ingredients:

- 1. Dark 't Hooft-Polyakov monopoles
- 2. A Higgs-portal coupling to the visible sector

OUTLINE

•Review of 't Hooft-Polyakov monopoles

- •Higgs-portal dark monopoles
 - Modified EW VEV inside monopole
- Cosmological monopole production
 - Production during a thermal phase transition
 - Production during preheating

Phenomenology

T HOOFT-POLYAKOV MONOPOLES

'T HOOFT-POLYAKOV MONOPOLES

Consider the gauge symmetry breaking SU(2)/U(1) by a triplet scalar:

$$\mathcal{L}_{\text{dark}} = \frac{1}{2} \left(D_{\mu} \Phi \right)^2 - \frac{1}{4} \text{Tr}(F_{\mu\nu} F^{\mu\nu}) - \frac{\lambda}{4} \left(|\Phi|^2 - f^2 \right)^2$$

In the "hedgehog gauge"

$$\Phi^a = \hat{r}^a f \phi(r), \qquad A^a_i = \frac{1}{g} \epsilon^{aij} \hat{r}^j \left(\frac{1 - u(r)}{r}\right)$$

The time-independent equations of motion are

Want to solve with boundary conditions

$$\phi(0) = 0$$
, $\phi(\infty) = 1$, $u(0) = 1$, $u(\infty) = 0$

'T HOOFT-POLYAKOV MONOPOLES

Large-radius behavior:

'T HOOFT-POLYAKOV MONOPOLES

The monopole radius, defined by the ϕ profile, is

 $R_{\textcircled{M}} \simeq \min[m_{h'}^{-1}, m_{W'}^{-1}]$

The monopole mass is

$$\begin{split} M_{\bigodot} &= \int 4 \,\pi \, r^2 \left(\frac{1}{2} \,B_i^a \,B_i^a + \frac{1}{2} \,(D_i \Phi^a) (D_i \Phi^a) + V(\Phi) \right) \\ &= \frac{4 \pi f}{g} \int d\bar{r} \bar{r}^2 \left(\frac{\bar{r}^2 \,\phi'^2 + 2 \,u^2 \phi^2}{2 \,\bar{r}^2} + \frac{(1 - u^2)^2 + 2 \,\bar{r}^2 \,u'^2}{2 \,\bar{r}^4} + \frac{\lambda}{4g^2} (\phi^2 - 1)^2 \right) \equiv \frac{4 \pi f}{g} \,Y(\lambda/g^2) \end{split}$$

Both can be large, even macroscopic, given suitably small g and λ . We'll take $\lambda \leq g^2$ so that the radius is maximized for given g, f.

HIGGS-PORTAL DARK MONOPOLES

HIGGS PORTAL

Higgs portal couplings at the renormalizable level:

$$V(\Phi, H) = \frac{\lambda_{\phi}}{4} |\Phi|^4 - \frac{1}{2} \mu_{\phi}^2 |\Phi|^2 + \lambda_h (H^{\dagger} H)^2 + \mu_h^2 H^{\dagger} H - \frac{1}{2} \lambda_{\phi h} |\Phi|^2 H^{\dagger} H + V_0$$

VEVs:

$$f^2 = \frac{2\,\mu_\phi^2 + \lambda_{\phi h} v^2}{2\,\lambda_\phi}, \qquad v^2 = \frac{-2\,\mu_h^2 + \lambda_{\phi h} f^2}{2\,\lambda_h}$$

Cases with non-zero VEVs:

EQUATIONS OF MOTION

Recall the EOM without the Higgs portal

$$\begin{aligned} \frac{d^2\phi}{d\bar{r}^2} + \frac{2}{\bar{r}}\frac{d\phi}{d\bar{r}} &= \frac{2\,u^2\,\phi}{\bar{r}^2} + \frac{\lambda}{g^2}\phi\,(\phi^2 - 1)\;,\\ \frac{d^2u}{d\bar{r}^2} &= \frac{u\,(u^2 - 1)}{\bar{r}^2} + u\,\phi^2\;, \end{aligned}$$

With boundary conditions

$$\phi(0) = 0$$
, $\phi(\infty) = 1$, $u(0) = 1$, $u(\infty) = 0$

EQUATIONS OF MOTION

Adding the Higgs portal:

$$\begin{aligned} \frac{d^2\phi}{d\bar{r}^2} + \frac{2}{\bar{r}}\frac{d\phi}{d\bar{r}} &= \frac{2\,u^2\phi}{\bar{r}^2} + \frac{\lambda_\phi}{g^2}\phi^3 - \frac{\mu_\phi^2\phi}{g^2f^2} - \frac{\lambda_{\phi h}}{2g^2}\frac{v^2}{f^2}\phi\,h^2 \ ,\\ \frac{d^2u}{d\bar{r}^2} &= \frac{u(u^2-1)}{\bar{r}^2} + u\,\phi^2 \ ,\\ \frac{d^2h}{d\bar{r}^2} + \frac{2}{\bar{r}}\frac{dh}{d\bar{r}} &= \frac{\lambda_h}{g^2}\frac{v^2}{f^2}h^3 + \frac{\mu_h^2}{g^2f^2}h - \frac{\lambda_{\phi h}}{2\,g^2}\phi^2h \ .\end{aligned}$$

With boundary conditions

$$\phi(0) = 0$$
, $\phi(\infty) = 1$, $h'(0) = 0$, $h(\infty) = 1$, $u(0) = 1$, $u(\infty) = 0$

rescaling
$$\sqrt{H^{\dagger}H} = h(r)v/\sqrt{2}$$

FIELD PROFILES

Small g has been chosen to give large radius $\gg v^{-1}$.

To prevent tunings, we have chosen $\lambda_{\phi h} \sim \frac{\mu_h^2}{f^2}$.

(We could also get a larger radius by a fine-tuned cancellation of $\lambda_{\phi h} f^2 - 2\mu_h^2$)

PRODUCTION

PRODUCTION

Your intuition may be that dark monopoles would be overproduced.

This intuition comes from the GUT monopole problem.

However, thermal phase transitions will tend to <u>underproduce</u> largeradius monopoles.

Monopole-antimonopole <u>annihilations</u> play an important role.

KIBBLE-ZUREK MECHANISM

Thermal phase transitions lead to different symmetry-breaking phases in different patches of the universe.

Kibble limit: at least one monopole per Hubble volume at the time of the thermal phase transition

U(1) example. Weinberg, Classical Solution in Quantum Field Theory Solitons and Instantons

KIBBLE-ZUREK MECHANISM

Thermal phase transitions lead to different symmetry-breaking phases in different patches of the universe.

Kibble limit: at least one monopole per Hubble volume at the time of the thermal phase transition

$$n_{\mathfrak{M}} \sim \xi^{-3} \qquad \qquad \xi < d_H(T_c')$$

First order phase transition: bubble radius gives log enhancement [Guth, Weinberg '83]

$$\xi \sim r_{\text{bubble}} \simeq (M_{\text{pl}}/T_c^{\prime 2}) / \ln(M_{\text{pl}}^4/T_c^{\prime 4}) \ll d_H(T_c^{\prime})$$
$$Y(T_c) \equiv \frac{n_{\mathfrak{M}}}{s} \simeq g_{*s}^{-1} \kappa^3 \left[\left(\frac{T_c^{\prime}}{M_{\text{pl}}} \right) \ln \left(\frac{M_{\text{pl}}^4}{T_c^{\prime 4}} \right) \right]^3$$

Second order phase transition: finite relaxation time gives enhancement [Zurek '85]

$$Y(T_c) \simeq g_{*s}^{-1} g_*^{1/2} \kappa \lambda \frac{T'_c}{M_{\rm pl}}$$

ANNIHILATIONS

NICHOLAS ORLOFSKY 18

ANNIHILATIONS

ANNIHILATIONS

Abundance after annihilations, assuming freeze-out temperature $T'_F \sim m_{W'} \sim gf$ [Preskill '79]

$$\Omega_{\odot}h^2 \approx 0.112 \times \left(\frac{\kappa}{1/10}\right) \left(\frac{gf}{1.5 \times 10^6 \,\mathrm{GeV}}\right)^2$$

Independent of abundance after phase transition (assuming the phase transition abundance is greater than this)

This gives a small monopole radius if it is a sizeable fraction of DM: $R_{\odot} \approx (g f)^{-1} \approx 7 \times 10^{-7} \,\text{GeV}^{-1}$

(Aside: large-radius monopoles could still be a tiny fraction of DM)

PREHEATING

Coupling to the oscillating inflaton field can induce exponential growth.

$$V \supset \frac{1}{2} m_{\mathcal{I},0}^2 \mathcal{I}^2 + \frac{1}{2} \lambda_{\mathcal{I}\phi} \mathcal{I}^2 |\Phi|^2$$
 Near the origin:
 $\lambda_{\mathcal{I}\phi} f^2 \gg m_{\mathcal{I},0}^2$

Equations of motion with $\langle \Phi_1
angle = f$:

$$\delta \varphi_{1k}'' + [A_{1k} + 2q \cos(2z)] \delta \varphi_{1k} = 0$$

$$\delta \varphi_{2,3k}'' + [A_{2,3k} + 2q \cos(2z)] \delta \varphi_{2,3k} = 0$$
 Mathieu equation

$$\begin{split} \delta\varphi_{i,k} &\equiv a^{3/2} \,\delta\Phi_{i,k} \qquad z \equiv m_{\mathcal{I}} \left(t - t_0\right) \\ q_0 &\equiv \frac{\lambda_{\mathcal{I}\phi} \,\mathcal{I}_0^2}{4 \, m_{\mathcal{I}}^2} \,, \quad q \equiv \frac{q_0}{a^3} \,, \quad A_{1\,k} = 2 \, q + \frac{k^2}{a^2 \, m_{\mathcal{I}}^2} + \frac{m_{h'}^2}{m_{\mathcal{I}}^2} \,, \quad A_{2,3\,k} = 2 \, q + \frac{k^2}{a^2 \, m_{\mathcal{I}}^2} \end{split}$$

On preheating: [Kofman, Linde, Starobinsky '94; '97]

On topological defect production: during preheating: [Kasuya, Kawasaki '97; '98; '99; Khlebinov, Kofman, Linde, Tkachev '98; '98; Rajantie, Copeland '00; Kawasaki, Yanagida, Yoshino '13; ...]

PREHEATING

PREHEATING

Number density at end of preheating can be much larger:

$$n_{\widehat{\mathbb{M}}}(t_{\mathrm{end}}) \simeq \xi^{-3} \simeq p_{*\,\mathrm{end}}^3 = (k_*/a_{\mathrm{end}})^3$$

 $k_* \simeq m_{\mathcal{I}} q_0^{1/4}$ Most enhanced mode

Abundance:

$$\Omega_{\widehat{\mathbb{M}}}h^2 \simeq 0.120 \times \left(\frac{10^3}{q_0}\right)^{1/4} \left(\frac{\lambda_{\mathcal{I}\phi}^{1/2}/g}{2 \times 10^{-7}}\right) \left(\frac{T_{\mathrm{RH}}}{1\,\mathrm{MeV}}\right)$$

No longer depends on radius

Dark sector decoupling $(\lambda_{\phi h} \leq 10^{-5})$ + EW restoration $(\lambda_{\phi h} f^2 \gtrsim \mu_h^2)$ requires $f \gtrsim 10^5$ GeV (below this line).

All points choose $\lambda_{I\phi}$ so monopoles are 100% DM.

 $T_{RH}=1~{
m MeV}$ and $\lambda_{\phi}=g^2.$

- A. Dark sector in kinetic and chemical equilibrium with itself.
- B. Only kinetic equilibrium
- C. No kinetic or chemical equilibrium

PHENOMENOLOGY

DIRECT DETECTION

We will focus on the EW-symmetric monopole.

Approximate the potential for a nucleon as a spherical well:

$$V(r) = A y_{hNN} \left(h(r) - v \right) \approx -V_0 \Theta(r - R_{\mathbf{M}})$$

DIRECT DETECTION

We will focus on the EW-symmetric monopole.

Approximate the potential for a nucleon as a spherical well:

$$V(r) = A y_{hNN} \left(h(r) - v \right) \approx -V_0 \Theta(r - R_{\textcircled{M}})$$

Using the Born approximation:

$$\begin{split} \sigma_{N \bigotimes}^{\text{elastic}} &\approx \left. \frac{\sigma_{A \bigotimes}^{\text{elastic}}}{A^2} = 4\pi \, \frac{1}{A^2} \left| \frac{m_A}{q} \int_0^\infty dr \, r \, \sin\left(qr\right) V(r) \right|^2 \\ &\approx \left. \frac{16\pi}{9} \, m_N^2 \, A^2 \, y_{hNN}^2 \, v^2 \, R_{\bigotimes}^6 \approx \left(2.5 \times 10^{-42} \, \text{cm}^2\right) \, \left(\frac{A}{131}\right)^2 \, \left(\frac{R_{\bigotimes}}{10^{-3} \, \text{GeV}}\right)^6 \end{split}$$

This growns as $R^6_{(M)}$ until it saturates to the geometric cross section:

$$\sigma_{A\,\mathrm{M}}^{\mathrm{elastic}} \approx 2\pi \, R_{\mathrm{M}}^2$$

However, bound states also form. See Yang Bai's talk after this!

DIRECT DETECTION

SUMMARY

SUMMARY

1. Higgs portal gives EW symmetry modifications in dark monopole interiors.

2. Thermal phase transitions underproduce, preheating expands possible radii.

10²⁰

 $M_{
m M}~({
m GeV})$

 $M_{
m M}~({
m g})$

10¹⁰

Kibble-Zurek + annih.

10³⁰

10⁻¹⁰

10⁻³⁰

10⁻¹⁰

B

10¹⁰

10⁻²⁰

10^{10 L}

10-10

10⁻²⁰

 $R_{\widehat{\mathbb{M}}} \; (\mathrm{GeV}^{-1})$

3. Large-volume terrestrial experiments are sensitive to single- and multi-hit signals.

1020

 M_{\odot} (GeV)

1030

1010

 M_{M} (g)

1010

 $R_{ar{\otimes}}$ (cm)

10-10

10-20

10-10

10-20

1010

10-10

 R_{\odot} (GeV⁻¹)

 $R_{\widehat{\mathbb{M}}}$ (cm)

Case I

EW-symmetric 100% DM

Thank you