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Macroscopic Dark Matter (MIDM)

+ Dark matter could be one type of matter made of dark

particles

+ Macroscopic dark matter is a composite state and may

contain many dark matter particles

+ |Its mass could be much heavier than the Planck mass scale

+ Its detections could be dramatically different from

ordinary WIMP searches
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Macroscopic Dark Matter

+ Some recent interests (incomplete):
“Big Bang Darkleosynthesis”, Krnjaic and Sigurdson, 1406.1171
“Dark Nuclei”, Detmold, McCullough and Pochinsky, 1406.2276

“Yukawa Bound States of a Large Number of Fermions”, Wise and
Zhang, 1407.4121

“Big Bang Synthesis of Nuclear Dark Matter”, Hardy et. al, 1411.3739

“Macro Dark Matter”, Jacob, Starkman and Lynn, 1410.2236

“Early Universe synthesis of asymmetric dark matter nuggets”,
Gresham, Lou and Zurek, 1707.02316

“Detecting Dark Blobs”, Grabowska, Melia and Rajendran,
1807.03788

“Signatures of Mirror Stars”, Curtin and Setford, 1909.04072
“N-MACHOs”, Dvali, Koutsangelas and Kuhnel, 1911.13281

“Gravitational microlensing by dark matter in extended structures”,
Croon, McKeen and Raj, 2002.08962



Formations

» Non-thermal production

# parametric resonance: see Nicholas Orlofsky’s talk for
dark magnetic monopole, 2005.00503

= misalignment: QCD axion stars

+ Thermal production: first-order phase transition

# Quark nuggets, Dark quark nuggets (YB, Long, Lu, 1810.04360)
# Non-topological soliton state

a later phase transition produces a bigger object

» Late-time coagulation: grow the size of dark matter states
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Interactions with SM

+ Higgs-portal interaction: simple and renormalizable

# interesting interplay with electroweak symmetry
breaking

+ Only gravitational interaction

» similar to primordial black hole (PBH), but with a larger
geometric size

+ Constituents of MDM charged under SM gauge groups

(not covered In this talk)



Higgs-portal Dark Matter

+ The simplest extension of the SM is the Higgs-portal dark

matter:
2
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with all dark matter mass from the Higgs VEV: u, =\@v

» For dark matter as a particle state, there are severe
experimental bounds from direct detection experiments

+ There exists a macroscopic dark matter state for this
simple model

Non-topological soliton state or Q-ball



Non-topological Soliton

+ For a complex scalar field with an unbroken global
symmetry, there exist nondissipative solutions of the
classical field equations that are absolute minima of the

energy for a fixed (sufficiently large) Q.

the vacuum pressure is balanced by the quantum or self-
interaction-generated pressure



Equations of Motion
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« The classical equations of motion o) =c¢/\/2 Hx) = ()2

2
¢"(r) + " ¢'(r) +

1
w* — > Ao h(r)2] P(r) =0,
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» Four boundary conditions: $'(0)=4(0)=0 ¢(0)=0 h(cc)=v

» Need to double-shooting on ¢(0) and 7(0) for a fixed value
of w



Example Solutions (1, = 0)
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for a large Q: Electroweak Symmetric Dark Matter Ball
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Dark Matter Ball Mass vs. Q

of Agn=3
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+ In the large Q limit, one has a simple relation

Q ~ R4, M@NQ3/4NR21)>



Add ® Self-Interaction
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» The existence of the self-quartic interaction changes the

dark matter ball properties significantly
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Via Coleman, we can use 1D particle description to

understand it
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Usse (10° GeV?)

Add ® Self-Interaction




Add ® Self-Interaction
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» Asa o — w,, the radius increases as R~x

w — @,
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Two Types of BEC

+ When the O self-interaction is not important (1, < 1), the
core density could be arbitrarily high (BEC)

Q ~ Rg, Mgy ~ Q7' ~ Ry

+ When the @ self-interaction is important (1, ~ 1), the
energy density is flat in the inner region

Q ~ R, Mg~ Q~ R

+ Both of them have p'/* ~ vy, and unbroken electroweak
symmetry in the inner region



Formation from First-Order Phase
Transition




Formation from 1’st Phase Transition

It is known that the Higgs-portal dark matter can also
trigger strong first-order phase transition
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Abundance of Dark Matter Balls

» Use initial DM nhumber asymmetry Y, to match DM abundance

+ The total number of dark matter within one Hubble patch is

Y. 134 GeV \”
Np™ ~ Yysdi ~ (7.8 x10°) (1()?11)( Te )

+ The number of nucleation sites within one Hubble volume

has y
Aon\
NPV ~ 1.0 x 10" x (%)

Y, 134 GeV\® /A \ M
0 (1) () (BGV)' ()

3 14
Mg ~ (3.9 x 10% GeV) < we b ) (134Gev> (Ad)h) 10%6GeV ~ 100g

5 x 10710 GeV

1/12 1/3 4.7
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Ry ~ (5.8 x 10° GeV ™) (A> ( ° ) ( : GeV) (M) 10°GeV ! ~ A
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Direct Detection

» The masses of dark matter balls are heavy, above the

Planck mass. So, its flux is small. One needs a large
volume detector to search for it.

1~ VAdet texp ~ -

Mpm Mpm 5 X 105 sz 10 yl’

- Because the cross section is large, it may have multiple
scattering with the material in a detector

I = nx opp_panl Vrel

E o~ 1 Xteeet X (Eg) XK ~ N, X 10keV X «

su scattering



Direct Detection of EWS-DMB

+ The energy density of electroweak symmetric dark matter
ball has p ~ (100 GeV)*, and very dense

1ooo:
[ w = 50
800} Q =8213
600:-

400 [

@(r), h(r) (GeV)

200 |-

o ~— ]

+ When SM particle (nucleon) scattering off the DMB, it will
feel a different mass from the zero Higgs VEV inside DMB

< D —my NN — y,yn(h — v) NN Youw & 0.0011
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Scattering Cross Sections
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+ The cross sections change from a hard sphere 4zR’> to 2zR?

+ They are insensitive to the target nucleon or nucleus

masses
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Direct Detection

Mg (8)
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Mg (GeV) Ponton, YB, Jain, 1906.10739

Experiments with an energy threshold lower than ~1 MeV
have chance to detect elastic scattering of DMB

- see also Bramante, et.al., 1812.09325



Radiative Capture of Nucleus by
Dark Matter

» Just like hydrogen formation from electron and proton
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+ Except that one needs to go beyond the dipole

approximation
23



Radiative Capture Cross Section

Moo = — Zee" / BB e [Vt (%) (%) — W () V(X))
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+ Dipole limit: ¢Rg <1
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Radiative Capture Cross Section

Moo = — Zee" / BB e [Vt (%) (%) — W () V(X))

2
En,
O-fy,nﬁ — /dQ ‘87T§| Z |Mn£m|2

» Lower-energy limit: fRg < 1

R (G’eV_l)
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Radiative Capture Cross Section
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Radiative Capture Cross Section
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Obtain the similar behaviors as neutron capture by a

large nucleus
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» Working in progress with experimentalists to apply the
actual data to search for MDM

28



Only Gravitational Interaction

+ Phenomenological model parameter space at a heavy
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29 YB, Long and Lu, 2003.13182



Gravitational Lensing

+ Eilnstein radius:

1/2
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Bartelmann and Schneider, 2001

30 YB, Long and Lu, 2003.13182



yr = ds/Rg

Gravitational Lensing
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+ Optical depths drop dramatically as R > O(Ry)
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Gravitational Lensing

10" ¢
"= 10
8
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Below ~ 107! M, there is no lensing constraint

Other lensing systems to improve the limits in the future

Dai, Venumadhay, et. al, 1804.03149 Dror, Ramani, et. al, 1901.04490
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Accretion of Baryonic Matter

+ Large and localized gravitational potential by MDM can
accrete ordinary baryons, which are hot and can radiate
photons to change the electron recombination history

+ For PBH, there are many studies along this direction with
either spherical or non-spherical accretion. In our study,
we take spherical accretion for simplicity

+ For PBH, Bondi accretions have been used (see Ali-Haimoud
and Kamionkowski, 1612.05644). To obtain stationary solutions,
we implement the hydrostatic approximation

1 ,
,0'+ﬁ(r2pv) =0

v P Y20 Gl ad

pv+pvv + P =pg 2 TR

r

p(e/p)' +pv (6/,0), + P%(rzv), =g
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Bondi vs. Hydrostatic
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* Bondi radius: Ry = Gy M/ cgo with the sound speed
Coo = \/IP /3P,
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Luminosity and lonization

0.01- R=100 Rs —-—- photoionization - c 10 - | ‘M=1‘03I‘Vl@‘ §=3.6;1012cm ]
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50 100 500 1000 50 100 500 1000
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pgo mp3/2 (GNM)7/2

L~4.1x107°% x dashed yellow: M = 10° M., fogy = 0.01
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Constraints from CMB anisotropy

1018 |
CMB anisotropy
” collisional
10"° F ionization

. ——- photoionization 10% AU

1AU

dMACHO radius: R [cm]

0.1 1 10 102 103 104

dMACHO mass: M [ Mg ]

+ Assume dMACHO account for 100% dark matter
*+ We require Ax,(z = 50) < 10~
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Conclusions

» Macroscopic dark matter appears in several simple models

- Non-trivial phase transitions in the early universe generate
dark matter in a state different from zero-temperature vacua

» For Higgs-portal dark matter, the non-topological soliton

dark matter is in the electroweak symmetric phase

+ An experiment with a large volume and a long-exposure

time would be ideal to search for dark matter balls with
multi-scattering events up to mass of one gram

+ QGravitational lensing and CMB experiments probe the

parameter space from the heavy side till 10*> grams
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Abundance of Free Dark Particles

» During the chemical equilibrium, the ratio of dark matter
energy density in the low-temperature phase over the high-

temperature phase has

3/2
r p— — 2~ 6 m¢ (T) / e_ﬂlqﬁ(T)/T
M) 21T

+ The freeze-out temperature is controlled by the process

@g+ P = @y, + X

Coramgrr = (ov)ng =~ 4w RGQD<T) ? =4dm REE(T) 5 A5 Gxs T

+ The freeze-out temperature is low and below ~ 1 GeV

+ S0, the dark matter fraction in the free particle state is

dramatically suppressed and negligible
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