# Macroscopic Dark Matter: models and detections

## Yang Bai

University of Wisconsin-Madison

On-line "Newton 1665" seminars, May 28, 2020

## **Macroscopic Ordinary Matter**

For ordinary matter, there are so many different types





## **Macroscopic Dark Matter (MDM)**

- Dark matter could be one type of matter made of dark particles
- Macroscopic dark matter is a composite state and may contain many dark matter particles
- Its mass could be much heavier than the Planck mass scale
- Its detections could be dramatically different from ordinary WIMP searches

## **Macroscopic Dark Matter**

- Some recent interests (incomplete):
  - **\*\* "Big Bang Darkleosynthesis", Krnjaic and Sigurdson, 1406.1171**
  - \* "Dark Nuclei", Detmold, McCullough and Pochinsky, 1406.2276
  - "Yukawa Bound States of a Large Number of Fermions", Wise and Zhang, 1407.4121
  - \* "Big Bang Synthesis of Nuclear Dark Matter", Hardy et. al, 1411.3739
  - \* "Macro Dark Matter", Jacob, Starkman and Lynn, 1410.2236
  - "Early Universe synthesis of asymmetric dark matter nuggets", Gresham, Lou and Zurek, 1707.02316
  - "Detecting Dark Blobs", Grabowska, Melia and Rajendran, 1807.03788
  - \* "Signatures of Mirror Stars", Curtin and Setford, 1909.04072
  - \* "N-MACHOs", Dvali, Koutsangelas and Kuhnel, 1911.13281
  - "Gravitational microlensing by dark matter in extended structures", Croon, McKeen and Raj, 2002.08962

#### **Formations**

- Non-thermal production
  - \* parametric resonance: see Nicholas Orlofsky's talk for dark magnetic monopole, 2005.00503
  - \* misalignment: QCD axion stars
- Thermal production: first-order phase transition
  - **Quark nuggets, Dark quark nuggets (YB, Long, Lu, 1810.04360)**
  - Non-topological soliton state

a later phase transition produces a bigger object

\* Late-time coagulation: grow the size of dark matter states

## Interactions with SM

- \* Higgs-portal interaction: simple and renormalizable
  - interesting interplay with electroweak symmetry breaking
- Only gravitational interaction
  - similar to primordial black hole (PBH), but with a larger geometric size
- Constituents of MDM charged under SM gauge groups (not covered in this talk)

## **Higgs-portal Dark Matter**

 The simplest extension of the SM is the Higgs-portal dark matter:

$$\mathscr{L} = \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi + \partial_{\mu} H^{\dagger} \partial^{\mu} H - \lambda_{h} \left( H^{\dagger} H - \frac{v^{2}}{2} \right)^{2} - \lambda_{\phi h} \Phi^{\dagger} \Phi H^{\dagger} H$$

with all dark matter mass from the Higgs VEV:  $M_{\Phi} = \sqrt{\frac{\lambda_{\phi h}}{2}} v$ 

- For dark matter as a particle state, there are severe experimental bounds from direct detection experiments
- There exists a macroscopic dark matter state for this simple model

#### Non-topological soliton state or Q-ball

## **Non-topological Soliton**

 For a complex scalar field with an unbroken global symmetry, there exist nondissipative solutions of the classical field equations that are absolute minima of the energy for a fixed (sufficiently large) Q.



the vacuum pressure is balanced by the quantum or selfinteraction-generated pressure

#### **Equations of Motion**

$$\mathcal{L} = \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi + \partial_{\mu} H^{\dagger} \partial^{\mu} H - \lambda_{h} \left( H^{\dagger} H - \frac{v^{2}}{2} \right)^{2} - \lambda_{\phi h} \Phi^{\dagger} \Phi H^{\dagger} H$$

• The classical equations of motion  $\Phi(x_{\mu}) = e^{i\omega t}\phi(r)/\sqrt{2}$   $H(x_{\mu}) = h(r)/\sqrt{2}$ 

$$\begin{split} \phi''(r) &+ \frac{2}{r} \phi'(r) + \left[ \omega^2 - \frac{1}{2} \lambda_{\phi h} h(r)^2 \right] \phi(r) = 0 \,, \\ h''(r) &+ \frac{2}{r} h'(r) + \left[ \frac{m_h^2}{2} - \lambda_h h(r)^2 - \frac{1}{2} \lambda_{\phi h} \phi(r)^2 \right] h(r) = 0 \,, \end{split}$$

- Four boundary conditions:  $\phi'(0) = h'(0) = 0$   $\phi(\infty) = 0$   $h(\infty) = v$
- \* Need to double-shooting on  $\phi(0)$  and h(0) for a fixed value of  $\omega$

**Example Solutions (** $\lambda_{\phi} = 0$ )



for a large Q: Electroweak Symmetric Dark Matter Ball

#### Dark Matter Ball Mass vs. Q



In the large Q limit, one has a simple relation

$$Q \sim R^4_{\oplus}, \qquad M_{\oplus} \sim Q^{3/4} \sim R^3_{\oplus}$$

#### Add $\Phi$ Self-Interaction

$$\mathcal{L} = \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi + \partial_{\mu} H^{\dagger} \partial^{\mu} H - \lambda_h \left( H^{\dagger} H - \frac{v^2}{2} \right)^2 - \lambda_{\phi h} \Phi^{\dagger} \Phi H^{\dagger} H - m_{\phi,0}^2 \Phi^{\dagger} \Phi - \lambda_{\phi} (\Phi^{\dagger} \Phi)^2$$

 The existence of the self-quartic interaction changes the dark matter ball properties significantly

$$h^{2} \approx \begin{cases} \frac{m_{h}^{2}}{2\lambda_{h}} - \frac{\lambda_{\phi h}}{2\lambda_{h}} \phi^{2} & \text{for } \lambda_{\phi h} \phi^{2} < m_{h}^{2} ,\\ 0 & \text{for } \lambda_{\phi h} \phi^{2} > m_{h}^{2} . \end{cases}$$
$$U_{\text{eff}}(\phi) = -V_{\Phi}(\phi) + \begin{cases} \frac{1}{2} \left(\omega^{2} - \frac{\lambda_{\phi h} m_{h}^{2}}{4\lambda_{h}}\right) \phi^{2} + \frac{\lambda_{\phi h}^{2}}{16\lambda_{h}} \phi^{4} & \text{for } \lambda_{\phi h} \phi^{2} < m_{h}^{2} ,\\ \frac{1}{2} \omega^{2} \phi^{2} - \frac{m_{h}^{4}}{16\lambda_{h}} & \text{for } \lambda_{\phi h} \phi^{2} > m_{h}^{2} . \end{cases}$$

$$\phi'' + \frac{2}{r}\phi' + U'_{\text{eff}}(\phi) \approx 0$$

 Via Coleman, we can use 1D particle description to understand it

#### Add $\Phi$ Self-Interaction



#### Add $\Phi$ Self-Interaction





 $Q \sim R^3_{\oplus}$ ,  $M_{\oplus} \sim Q \sim R^3_{\oplus}$   $\rho = \frac{M_{\oplus}}{(4\pi/3)R^3_{\oplus}} \sim (100 \text{ GeV})^4$ 

## **Two Types of BEC**

\* When the  $\Phi$  self-interaction is not important ( $\lambda_{\phi} \ll 1$ ), the core density could be arbitrarily high (BEC)

$$Q \sim R^4_{\oplus}, \qquad M_{\oplus} \sim Q^{3/4} \sim R^3_{\oplus}$$

\* When the  $\Phi$  self-interaction is important ( $\lambda_\phi \sim 1$ ), the energy density is flat in the inner region

$$Q \sim R^3_{\oplus}, \qquad M_{\oplus} \sim Q \sim R^3_{\oplus}$$

\* Both of them have  $\rho^{1/4} \sim v_{\rm EW}$  and unbroken electroweak symmetry in the inner region

## Formation from First-Order Phase Transition





#### **Formation from 1'st Phase Transition**

 It is known that the Higgs-portal dark matter can also trigger strong first-order phase transition



#### **Abundance of Dark Matter Balls**

- \* Use initial DM number asymmetry  $Y_{\Phi}$  to match DM abundance
- The total number of dark matter within one Hubble patch is

$$N_{\Phi}^{\text{Hubble}} \approx Y_{\Phi} s d_H^3 \simeq (7.8 \times 10^{37}) \left(\frac{Y_{\Phi}}{10^{-11}}\right) \left(\frac{134 \,\text{GeV}}{T_c}\right)^3$$

The number of nucleation sites within one Hubble volume has

$$N_{\rm DMB}^{\rm Hubble} \sim 1.0 \times 10^{13} \times \left(\frac{\lambda_{\phi h}}{3}\right)^{-14}$$

$$Q \sim (7.8 \times 10^{24}) \left(\frac{Y_{\Phi}}{10^{-11}}\right) \left(\frac{134 \,\text{GeV}}{T_c}\right)^3 \left(\frac{\lambda_{\phi h}}{3}\right)^{14}$$

$$M_{\oplus} \sim (3.9 \times 10^{26} \,\text{GeV}) \left(\frac{\omega_c Y_{\Phi}}{5 \times 10^{-10} \,\text{GeV}}\right) \left(\frac{134 \,\text{GeV}}{T_c}\right)^3 \left(\frac{\lambda_{\phi h}}{3}\right)^{14} \qquad 10^{26} \,\text{GeV} \sim 100 \,\text{g}$$

$$R_{\oplus} \approx (5.8 \times 10^5 \,\,\text{GeV}^{-1}) \left(\frac{\lambda_{\phi}}{0.013}\right)^{1/12} \left(\frac{Y_{\Phi}}{10^{-11}}\right)^{1/3} \left(\frac{134 \,\,\text{GeV}}{T_c}\right) \left(\frac{\lambda_{\phi h}}{3}\right)^{4.7} \qquad 10^5 \,\,\text{GeV}^{-1} \sim \text{\AA}$$

#### **Direct Detection**

 The masses of dark matter balls are heavy, above the Planck mass. So, its flux is small. One needs a large volume detector to search for it.

$$1 \sim \frac{\rho_{\rm DM}}{m_{\rm DM}} v A_{\rm det} t_{\rm exp} \sim \frac{10^{21} \,{\rm GeV}}{m_{\rm DM}} \frac{A_{\rm det}}{5 \times 10^5 \,{\rm cm}^2} \frac{t_{\rm exp}}{10 \,{\rm yr}}$$

 Because the cross section is large, it may have multiple scattering with the material in a detector

$$\Gamma = n_{\rm A} \, \sigma_{\rm DM-ball} \, \bar{v}_{\rm rel}$$

$$E_{\text{sum}} \sim \Gamma \times t_{\text{select}} \times \langle E_R \rangle \times \kappa \sim N_{\text{scattering}} \times 10 \,\text{keV} \times \kappa$$

#### **Direct Detection of EWS-DMB**

\* The energy density of electroweak symmetric dark matter ball has  $\rho \sim (100\,{\rm GeV})^4$ , and very dense



 When SM particle (nucleon) scattering off the DMB, it will feel a different mass from the zero Higgs VEV inside DMB

$$\mathscr{L} \supset -m_N \overline{N}N - y_{hNN}(h-v) \overline{N}N \qquad y_{hNN} \approx 0.0011$$

## **Scattering Cross Sections**



- \* The cross sections change from a hard sphere  $4\pi R^2$  to  $2\pi R^2$
- They are insensitive to the target nucleon or nucleus masses

#### **Direct Detection**



 Experiments with an energy threshold lower than ~1 MeV have chance to detect elastic scattering of DMB

see also Bramante, et.al., 1812.09325

## Radiative Capture of Nucleus by Dark Matter

Just like hydrogen formation from electron and proton



 Except that one needs to go beyond the dipole approximation

$$\mathcal{M}_{n\ell m} = \frac{1}{2\mu} Z e \,\boldsymbol{\epsilon}^* \cdot \int d^3 x \, e^{-i \,\mathbf{q} \cdot \mathbf{x}} \left[ \nabla \psi_{n\ell m}^*(\mathbf{x}) \,\psi_{\mathbf{k}}(\mathbf{x}) - \psi_{n\ell m}^*(\mathbf{x}) \,\nabla \psi_{\mathbf{k}}(\mathbf{x}) \right]$$

$$\sigma_{\gamma,n\ell} = \frac{1}{v} \int d\Omega \, \frac{|E_{n\ell}|}{8 \, \pi^2} \, \sum_m \, |\mathcal{M}_{n\ell m}|^2$$

\* **Dipole limit:**  $qR_{\oplus} \ll 1$ 



$$\mathcal{M}_{n\ell m} = \frac{1}{2\mu} Z e \,\boldsymbol{\epsilon}^* \cdot \int d^3 x \, e^{-i \,\mathbf{q} \cdot \mathbf{x}} \left[ \nabla \psi_{n\ell m}^*(\mathbf{x}) \,\psi_{\mathbf{k}}(\mathbf{x}) - \psi_{n\ell m}^*(\mathbf{x}) \,\nabla \psi_{\mathbf{k}}(\mathbf{x}) \right]$$

$$\sigma_{\gamma,n\ell} = \frac{1}{v} \int d\Omega \, \frac{|E_{n\ell}|}{8 \, \pi^2} \, \sum_m \, |\mathcal{M}_{n\ell m}|^2$$

\* Lower-energy limit:  $kR_{\oplus} \ll 1$ 





YB and Berger, 1912.02813



 Obtain the similar behaviors as neutron capture by a large nucleus

## **Detection Sensitivity**



 Working in progress with experimentalists to apply the actual data to search for MDM

## **Only Gravitational Interaction**

 Phenomenological model parameter space at a heavy mass



YB, Long and Lu, 2003.13182

#### **Gravitational Lensing**

Einstein radius:

$$R_{\rm E} = \sqrt{4 \, G_{\rm N} \, M \, \kappa (1 - \kappa) \, D_{\rm S}} \approx (1.51 \times 10^{14} \, \text{cm}) \times \left(\frac{\sqrt{\kappa (1 - \kappa)}}{1/2}\right) \left(\frac{D_{\rm S}}{50 \, \text{kpc}}\right)^{1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2}$$



#### **Gravitational Lensing**



$$\tau = D_{\rm OS} \, \int_0^1 \mathrm{d}\kappa \, n_{\rm lens}(\vec{r}_{\rm O} + \kappa \, D_{\rm OS} \, \hat{n}_{\rm L}) \, \pi \, y_{\rm T}^2 \Big( R/R_{\rm E}(\kappa), \mu_{\rm T} \Big) \, R_{\rm E}^2(\kappa)$$

\* Optical depths drop dramatically as  $R \ge \mathcal{O}(R_{\rm E})$ 

## **Gravitational Lensing**



- \* Below  $\sim 10^{-11} M_{\odot}$ , there is no lensing constraint
- Other lensing systems to improve the limits in the future

Dai, Venumadhav, et. al, 1804.03149

Dror, Ramani, et. al, 1901.04490

## **Accretion of Baryonic Matter**

- Large and localized gravitational potential by MDM can accrete ordinary baryons, which are hot and can radiate photons to change the electron recombination history
- For PBH, there are many studies along this direction with either spherical or non-spherical accretion. In our study, we take spherical accretion for simplicity
- For PBH, Bondi accretions have been used (see Ali-Haimoud and Kamionkowski, 1612.05644). To obtain stationary solutions, we implement the *hydrostatic approximation*

$$\dot{\rho} + \frac{1}{r^2} (r^2 \rho v)' = 0$$

$$\rho \dot{v} + \rho v v' + P' = \rho g \qquad \xrightarrow{v \to 0} \qquad \frac{G_N \widetilde{M}(r)}{r^2} + \gamma K \rho(r)^{\gamma - 2} \frac{d\rho}{dr} = 0$$

$$P(\epsilon/\rho) \cdot + \rho v (\epsilon/\rho)' + P \frac{1}{r^2} (r^2 v)' = \dot{q}$$

$$33$$

#### **Bondi vs. Hydrostatic**



\* Bondi radius:  $R_{\rm B} = G_{\rm N} M/c_{\infty}^2$  with the sound speed  $c_{\infty} = \sqrt{5P_{\infty}/3\rho_{\infty}}$ 

#### **Luminosity and Ionization**



$$\begin{split} L_{\rm Edd} &= 4\pi G_N M m_p / \sigma_{\rm T} \\ L &\approx 4.1 \times 10^{-6} \times \frac{\rho_\infty^2 \, m_p^{3/2} \, (G_N M)^{7/2}}{T_\infty^3 \, m_e^{3/2} \, R^{1/2}} \end{split}$$

dashed blue:  $M = 10^2 M_{\odot}, f_{\rm PBH} = 1$ dashed yellow:  $M = 10^3 M_{\odot}, f_{\rm PBH} = 0.01$ 

## **Constraints from CMB anisotropy**



dMACHO mass : M  $[M_{\odot}]$ 

- Assume dMACHO account for 100% dark matter
- \* We require  $\Delta x_e(z = 50) < 10^{-4}$

#### Conclusions

- Macroscopic dark matter appears in several simple models
- Non-trivial phase transitions in the early universe generate dark matter in a state different from zero-temperature vacua
- For Higgs-portal dark matter, the non-topological soliton dark matter is in the electroweak symmetric phase
- An experiment with a large volume and a long-exposure time would be ideal to search for dark matter balls with multi-scattering events up to mass of one gram
- Gravitational lensing and CMB experiments probe the parameter space from the heavy side till 10<sup>22</sup> grams



#### **Abundance of Free Dark Particles**

 During the chemical equilibrium, the ratio of dark matter energy density in the low-temperature phase over the hightemperature phase has

$$r \equiv \frac{n_{\Phi}^{(1)}}{n_{\Phi}^{(h)}} \approx 6 \left(\frac{m_{\phi}(T)}{2\pi T}\right)^{3/2} e^{-m_{\phi}(T)/T}$$

The freeze-out temperature is controlled by the process

$$\textcircled{\Phi}_Q + \Phi \to \textcircled{\Phi}_{Q+1} + X$$

$$\Gamma_{Q+\Phi\to Q+1} = \langle \sigma v \rangle \, n_{\textcircled{D}} \simeq 4 \, \pi \, R^2_{\textcircled{D}}(T) \, \frac{Y_{\Phi} \, s}{Q} = 4 \, \pi \, R^2_{\textcircled{D}}(T) \, \frac{Y_{\Phi}}{Q} \, \frac{2\pi^2}{45} \, g_{*s} \, T^3$$

- The freeze-out temperature is low and below ~ 1 GeV
- So, the dark matter fraction in the free particle state is dramatically suppressed and negligible