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Macroscopic Ordinary Matter

For ordinary matter, there are so many different types
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Macroscopic Dark Matter (MDM)

Dark matter could be one type of matter made of dark 
particles

Macroscopic dark matter is a composite state and may 
contain many dark matter particles

Its mass could be much heavier than the Planck mass scale

Its detections could be dramatically different from 
ordinary WIMP searches
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Macroscopic Dark Matter
Some recent interests (incomplete): 

“Big Bang Darkleosynthesis”, Krnjaic and Sigurdson, 1406.1171

“Dark Nuclei”, Detmold, McCullough and Pochinsky, 1406.2276

“Big Bang Synthesis of Nuclear Dark Matter”, Hardy et. al, 1411.3739

“Yukawa Bound States of a Large Number of Fermions”, Wise and 
Zhang, 1407.4121

“Early Universe synthesis of asymmetric dark matter nuggets”, 
Gresham, Lou and Zurek, 1707.02316
“Detecting Dark Blobs”, Grabowska, Melia and Rajendran, 
1807.03788

“Macro Dark Matter”, Jacob, Starkman and Lynn, 1410.2236

……

“Signatures of Mirror Stars”, Curtin and Setford, 1909.04072

“Gravitational microlensing by dark matter in extended structures”, 
Croon, McKeen and Raj, 2002.08962

“N-MACHOs”, Dvali, Koutsangelas and Kuhnel, 1911.13281
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Formations
Non-thermal production

Quark nuggets, Dark quark nuggets                              

Non-topological soliton state

parametric resonance: see Nicholas Orlofsky’s talk for 
dark magnetic monopole, 2005.00503

Thermal production: first-order phase transition

misalignment: QCD axion stars

Late-time coagulation: grow the size of dark matter states

a later phase transition produces a bigger object

(YB, Long, Lu, 1810.04360)
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Interactions with SM

Higgs-portal interaction: simple and renormalizable 

Constituents of MDM charged under SM gauge groups 
(not covered in this talk)

interesting interplay with electroweak symmetry 
breaking

Only gravitational interaction

similar to primordial black hole (PBH), but with a larger 
geometric size
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Higgs-portal Dark Matter
The simplest extension of the SM is the Higgs-portal dark 
matter: 

ℒ = ∂μΦ†∂μΦ + ∂μH†∂μH − λh (H†H −
v2

2 )
2

− λϕh Φ†ΦH†H

with all dark matter mass from the Higgs VEV: MΦ =
λϕh

2
v

For dark matter as a particle state, there are severe 
experimental bounds from direct detection experiments

Non-topological soliton state or Q-ball

There exists a macroscopic dark matter state for this 
simple model
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Non-topological Soliton
For a complex scalar field with an unbroken global 
symmetry, there exist nondissipative solutions of the 
classical field equations that are absolute minima of the 
energy for a fixed (sufficiently large) Q. 

⟨h⟩ = v⟨h⟩ = 0

the vacuum pressure is balanced by the quantum or self-
interaction-generated pressure
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Equations of Motion
ℒ = ∂μΦ†∂μΦ + ∂μH†∂μH − λh (H†H −

v2

2 )
2

− λϕh Φ†ΦH†H

The classical equations of motion

ϕ′ ′ (r) +
2
r

ϕ′ (r) + [ω2 −
1
2

λϕh h(r)2] ϕ(r) = 0 ,

h′ ′ (r) +
2
r

h′ (r) + [ m2
h

2
− λh h(r)2 −

1
2

λϕh ϕ(r)2] h(r) = 0 ,

Φ(xμ) = eiωtϕ(r)/ 2 H(xμ) = h(r)/ 2

Four boundary conditions: ϕ′ (0) = h′ (0) = 0 ϕ(∞) = 0 h(∞) = v

Need to double-shooting on        and        for a fixed value 
of 

ϕ(0) h(0)
ω
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Example Solutions ( )λϕ = 0

for a large Q: Electroweak Symmetric Dark Matter Ball
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Dark Matter Ball Mass vs. Q 

In the large Q limit, one has a simple relation  
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2 Soliton States in a Higgs-Portal Dark Matter Scenario

In the Higgs-portal dark matter scenario with a complex scalar particle �,1 the most general
renormalizable Lagrangian preserving a U(1)� symmetry is

L = @µ�
†@µ�+ @µH

†@µH � �h

✓
H†H �

v2

2

◆2

� ��h�
†�H†H �m2

�,0�
†�� ��(�

†�)2 . (1)

The U(1)� symmetry ensures that the elementary � quanta are stable, and therefore a DM
candidate. This is one of the simplest extension of the SM to include dark matter. For reasons
that will become clear in the following, we will focus on the region of parameter space with
��h > 0 and m2

�,0 � 0, so that the physical � mass squared is never negative, even in the absence
of a vacuum expectation value (vev) for H. We will also take �� > 0.2 In this case, the global
minimum of the tree-level potential breaks the EW symmetry spontaneously: hHi

T = (0, v/
p
2)

with v = 246 GeV, and h�i = 0. The quartic coupling �h is related to the Higgs boson mass
mh ⇡ 125 GeV [1] by �h = (mh/v)2/2 ⇡ 0.13. After EWSB, the free � particle mass is

m2
�
=

��h

2
v2 +m2

�,0 . (2)

When the bare dark matter mass m�,0 = 0, the � particle obtains all of its mass from EWSB
and m� =

p
��h v/

p
2.

We are interested here in non-vacuum field configurations that are nevertheless stable due
to the conservation of the charge associated with the global U(1)� symmetry. In the theory
given by Eq. (1), the existence and properties of such solutions were worked out in [2] (assuming
m�,0 = 0 and �� = 0), thus providing an example of a “non-topological soliton” (for a review,
see [3]). We will briefly review how these solutions arise and their salient features. We start
with the case m�,0 = 0 and �� = 0, to establish that such DM solitons exist even in this minimal
case, which depends on a single free parameter, ��h. This will also highlight the crucial role
played by this coupling. In a second stage we will include the e↵ects of the remaining two free
parameters, m2

�,0 and ��, which can a↵ect the qualitative properties of the soliton solutions. We
will describe the relevant features in Section 2.2.

The DM solitons are characterized by a non-vanishing charge

Q = i

Z
d3x

�
�†@t�� �@t�

†� = !

Z
d3x�2 , (3)

which is obtained from the time-dependence �(x) = e�i!t�(~x)/
p
2, with �(~x) real. We will

focus on spherically symmetric solitons with �(~x) = �(r) and HT =
�
0, h(r)/

p
2
�
, obeying the

1
Although we will not do so here, one could consider the fermionic case. Due to the Pauli exclusion principle,

it is qualitatively di↵erent from the bosonic example that is the focus of this work.
2
Furthermore, we restrict ourselves to the perturbative regime ��h ⌧ 4⇡ and �� ⌧ 16⇡

2
.

2

The existence of the self-quartic interaction changes the 
dark matter ball properties significantly

classical equations of motion

�00(r) +
2

r
�0(r) +


!2

�
1

2
��h h(r)

2

�
�(r) = 0 , (4)

h00(r) +
2

r
h0(r) +


m2

h

2
� �h h(r)

2
�

1

2
��h �(r)

2

�
h(r) = 0 , (5)

and subject to the boundary conditions �0(0) = h0(0) = 0, �(1) = 0 and h(1) = v.
In order to develop an intuition it is useful to write down an approximate description by

neglecting the Higgs derivatives in Eq. (5). The motivation is that often the Higgs profile is nearly
vanishing inside the DM soliton and takes the (almost) constant value v outside, approximating
a step function. Thus, apart from the relatively small transition region, the neglect of the spatial
derivatives can be justified a posteriori, thus permitting an e↵ective description in terms of a
single degree of freedom.3 Eq. (5) then shows that one can have configurations obeying

h2
⇡

8
><

>:

m2
h

2�h

�
��h

2�h

�2 for ��h �2 < m2
h
,

0 for ��h �2 > m2
h
.

(6)

Inserting Eq. (6) into Eq. (4) one gets

�00 +
2

r
�0 + U 0

e↵(�) ⇡ 0 , (7)

where the e↵ective potential is obtained by using Eq. (6) in (minus) the potential terms of
Eq. (1), but including the terms coming from the time derivatives:

�V!(h,�) ⌘
1

2
!2�2

�
1

4
�h

�
h2

� v2
�2

�
1

4
��h�

2h2
� V�(�) , (8)

giving

Ue↵(�) = �V�(�) +

8
>><

>>:

1

2

✓
!2

�
��h m2

h

4�h

◆
�2 +

�2
�h

16�h

�4 for ��h �2 < m2
h
,

1

2
!2�2

�
m4

h

16�h

for ��h �2 > m2
h
.

(9)

For later use, we reintroduced here the pure �-dependent terms

V�(�) =
1

2
m2

�,0 �
2 +

1

4
���

4 , (10)

3
When the transition region is not small, the approximation can deviate by order one from the exact solution,

but the qualitative features remain the same. We will also show numerical solutions that solve the full system

of Eqs. (4) and (5).
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3

Via Coleman, we can use 1D particle description to 
understand it
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simple. Based on these plots we can estimate the energy density associated with the DM soliton
configuration to be of order

⇢ =
M�

(4⇡/3)R3
⇠ (100 GeV)4 . (21)

To the extent that the scaling laws given in Eq. (20) connect the low Q and high Q cases, we
expect the same estimate to hold for very large Q DMBs.

2.2 E↵ects of the Dark Matter Bare Mass and Self-Quartic Interac-
tion

We now comment on the e↵ects of the remaining two parameters of the model, m2
�,0 and ��.

Within the context of the e↵ective potential description defined in Eq. (9), one can see that

1. The bare mass m2
�,0 can be easily included by defining an e↵ective !2 = !2

�m2
�,0 in the

e↵ective potential and associated EOM. One must only remember that when computing
observables such as the mass of the DM soliton via Eq. (17), it is the orthogonal com-
bination !2 + m2

�,0 that appears. Similarly, the charge Q is proportional to !, and the
combination ! enters only through �. With the solutions for the m2

�,0 = 0 case at hand
this can be easily taken into account.

2. The quartic self-interaction �� has a more significant e↵ect: it changes the large � behavior
of the e↵ective potential from the quadratic one used in the previous section, turning it
down to reach an asymptotic behavior �1

4���4 (for �� > 0) (see the left panel of Fig. 4).
This creates a maximum in the potential at some �max. The soliton solutions must therefore
satisfy �0 < �max, since for �0 > �max the solutions would run down the hill in the wrong
direction and not be bounded. This is the scenario considered for Q-balls in [5], and we
know that stable solitonic configurations exist in this case.

The first point could mean that even for ultraheavy elementary � particles that receive
only a small contribution to their mass from EWSB, it could be possible to have solitonic
configurations related to the weak scale, i.e. sustaining an EW symmetric “vacuum” in a finite
region of space, inside the normal EW breaking vacuum. Let us briefly comment on such a
possibility, assuming that �� = 0, so that the only new feature is the replacement ! ! ! in the
solutions to the EOM described in the previous sections. For concreteness, let us focus on the
simple analytical limit described above Eq. (??). When m�,0 is well above the EW scale, one can
neglect the vacuum contribution to the energy, so that the information about the Higgs sector,
mh and �h, disappears from the problem. By dimensional analysis the energy functional must
take the form M� = Qm�,0f0(!2/m2

�,0). The proportionality with Q follows from the fact that
we are in a purely quadratic description. Writing the analogous statement for the derivative
dM�/d! = Qm�,0f1(!2/m2

�,0) and setting it to zero determines the ratio x = !2/m2
�,0. But f1(x)

is a pure function, containing no parameters (��h does not contribute because h and � have non-
overlapping support). On the solution given by Eq. (13) (for r < R), one finds x ⇡ 3.20. This

9

then gives

M� ⇡ 2.67Qm�,0 , (for m4
h
/�h ⌧ Qm4

�,0 and ��h = 0) , (22)

where the specific numerical factor arises from the use of Eq. (13). Hence, these classical solutions
are unstable against the quantum decay into Q free � particles.

On the opposite limit, su�ciently small m�,0 will not disturb the stability of the m�,0 = 0
case. A perturbative calculation gives

M� ⇡
2
p
2⇡

3�1/4
h

Q3/4mh

"
1 +

3
p
�hQm2

�,0

2⇡2m2
h

+ · · ·

#
, (for ��h = 0) . (23)

Note that the condition for the asymptotic behavior shown in Eq. (22) is determined by 1/✏2 ⌧ 1,
where ✏ is the expansion parameter that can be read from Eq. (23). Thus, the asymptotic
behavior is reached rather fast once ✏ & 1. From Eqs. (22) and (23), one would conclude that
the � bare mass sets an upper bound on Q for stable DMBs. We will see, however, that a
�� 6= 0 changes this conclusion. Nevertheless, here we will restrict ourselves to masses not much
above the weak scale, as in this case these degrees of freedom can play a role in the EW phase
transition, and the consequent formation of the DM solitons themselves (Section 3).

Let us now describe some of the consequences of the quartic coupling ��, assuming for
simplicity that we are interested in DM solitons with a large charge Q, such that they fall in the
class of EWS-DMBs. In this case, the maximum of the e↵ective potential described in point 2
above lies in the region ��h �2 > m2

h
, where according to Eq. (9),

Ue↵ =
1

2
!2�2

�
1

4
���

4
�

m4
h

16�h

. (24)

This determines �max = !/
p
�� and Umax

e↵ = !4/(4��)�m4
h
/(16�h). Since Ue↵(� = 0) = 0, one

must have Umax
e↵ > 0, which defines a critical frequency

!c =

✓
��

4�h

◆1/4

mh , (25)

such that soliton solutions must obey ! > !c. The conditon (11) must also be imposed, so
that the origin be a maximum as opposed to a minimum, as discussed in the previous section.
Thus, in the presence of ��, ! is bounded by non-zero values both from below and above. In
the left panel of Fig. 4, we show the e↵ective potential as a function of � for several choices
of ! and fixed ��h = 3 and �� = 1. Only for ! 2 (147.5, 301) GeV, one can have a rolling
particle description from a point �0 at a slope with Ue↵(�0) > 0 and reaching � = 0 at r = 1,
hence DM solitons exist only in this range. [We also indicate on the ! = 160 GeV curve a
categorization of two distinct classes of DM solitons in terms of the initial conditions in the
particle mechanics analogue. The “quadratic DM solitons”, discussed in the previous section,
are denoted by DMB(2) in the figure. Those for which the quartic � self-interaction plays an
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As a               , the radius increases asω → ωc R ≈
0.66

ω − ωc
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Two Types of BEC

When the  self-interaction is important ( ), the 
energy density is flat in the inner region

Φ λϕ ∼ 1

When the  self-interaction is not important ( ), the 
core density could be arbitrarily high (BEC)

Φ λϕ ≪ 1

Both of them have  and unbroken electroweak 
symmetry in the inner region

ρ1/4 ∼ vEW
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Formation from First-Order Phase 
Transition
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Formation from 1’st Phase Transition
It is known that the Higgs-portal dark matter can also 
trigger strong first-order phase transition 
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Abundance of Dark Matter Balls
Use initial DM number asymmetry     to match DM abundance  YΦ

The total number of dark matter within one Hubble patch is

The number of nucleation sites within one Hubble volume 
has

1026GeV ∼ 100g

105GeV−1 ∼ Å
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Direct Detection
The masses of dark matter balls are heavy, above the 
Planck mass. So, its flux is small. One needs a large 
volume detector to search for it.

1 ∼
ρDM

mDM
v Adet texp ∼

1021GeV
mDM

Adet

5 × 105 cm2

texp

10 yr

Because the cross section is large, it may have multiple 
scattering with the material in a detector

Γ = nA σDM−ball v̄rel

Esum ∼ Γ × tselect × ⟨ER⟩ × κ ∼ Nscattering × 10 keV × κ
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Direct Detection of EWS-DMB
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Q = 8213

The energy density of electroweak symmetric dark matter 
ball has , and very dense ρ ∼ (100 GeV)4

When SM particle (nucleon) scattering off the DMB, it will 
feel a different mass from the zero Higgs VEV inside DMB

ℒ ⊃ − mN NN − yhNN(h − v) NN yhNN ≈ 0.0011
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Scattering Cross Sections

The cross sections change from a hard sphere          to  4πR2 2πR2

They are insensitive to the target nucleon or nucleus 
masses
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Direct Detection

Experiments with an energy threshold lower than ~1 MeV 
have chance to detect elastic scattering of DMB

1014 1019 1024 1029 103410-26
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DMBov
erb
ur
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n

Ponton, YB, Jain, 1906.10739

see also Bramante, et.al., 1812.09325  
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Radiative Capture of Nucleus by 
Dark Matter

Just like hydrogen formation from electron and proton

of dark matter with a charge Q = i
R
dx

3(�†
@t� � �@t�†). Solving the classical equations of

motion for both � and H and in the large Q limit, the dark matter soliton state has a mass of

M� = Q!c = Q

h
m

2
�,0 + (��/4�h)

1/2
m

2
h

i1/2
. (2)

Here, �h ⇡ 0.13 is the Higgs quartic coupling in the SM and mh ⇡ 125 GeV is the Higgs boson
mass. In the parameter region with

p
��/��h < 1.4, one has !c < m�, so the soliton state

has a lighter mass per charge than a free dark matter particle state. For a non-negligible ��

and a spherically symmetric EWS-DMB, the self-interaction of � field induces a step-like or
hard-sphere profile for the � field up to a radius R� and a wall thickness of 1/vEW. In the large
Q limit, there are simple scaling laws between the DMBs charge, size and mass: M� ⇠ Q ⇠ R

3
�
.

The energy density of a DMB is

⇢� =
M�

(4⇡/3)R3
�

⇠ v
4
EW ⇠ (100 GeV)4 , (3)

which is much denser than ordinary matter. The early universe production of the EWS-DMB
from the first-order phase transition has also been discussed in Ref. [11]. The EWS-DMBs can
have a macroscopic mass above 1 gram and a radius above 105 GeV�1, dramatically above the
electroweak scale.

Due to the interplay of � and Higgs profiles, the field value of � in the inner region of
EWS-DMB is large enough to flip the sign of the e↵ective Higgs mass squared, ��h�†���hv

2
EW,

and prefers a zero Higgs VEV or unbroken electroweak symmetry. Hence, this soliton state is
an interesting macroscopic dark matter, because it sustains an EW symmetric “vacuum” in a
finite region of space, immersed in the normal EW breaking vacuum.

When DMB with a large radius scatters with a nucleon or a nucleus, a large scattering cross
section is generically anticipated. For elastic scattering, there are e↵ects due to shallow bound
states at several partial waves. After summing over these partial waves, the cross section follows
a “hard ball” behavior, between 2 and 4 times the geometric cross section [11]. Multi-hit signals
are the characteristic features of the DMB elastic scattering events. Since only O(10 keV) are
anticipated from each scattering, a low energy threshold below around 1 MeV is required to
identify the dark matter scattering events. In this paper, we will instead concentrate on the
important radiative capture process, which can convert the binding energy of a nucleus and a
DMB into photons with energies of O(1 MeV� 100 MeV), depending on nucleus mass number.

3 Radiative capture cross section

A nucleus can be captured by a DMB while emitting a photon in a process similar to neutron
radiative capture by a nucleus, such as n + 197

79Au !
198
79Au + �. Explicitly, the DMB-induced

radiative capture process is

A
ZN+ � ! �N + � , (4)
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Figure 1: Left panel: the energy levels for nucleus-DMB bound states for di↵erent partial wave
numbers `. Right panel: the 12 radial wave functions as a function for r for the p-wave bound
states with ` = 1.

with n` =
p
2µ (V0 � |En`|) and kn` =

p
2µ |En`|. The coe�cients d1,2 and the energy eigen-

values En` are determined by the boundary conditions R
in
n`(R�) = R

out
n` (R�), R

0 in
n` (R�) =

R
0 out
n` (R�) and the normalization condition

R1
0 dr r

2
R

2
n`(r) = 1. While the energy eigenvalue

equation cannot be solved analytically without any approximations, the coe�cients d1 and d2

are found to be

d1 =
1

Nn` j`(n` R�)
, d2 =

1

Nn` [j`(i kn`R�) + i y`(i kn` R�)]
, (8)

where

N
2
n` =

1

2
R

3
�

"
K`�1/2(kn`R�)K`+3/2(kn`R�)

K
2
`+1/2(kn`R�)

�
J`�1/2(n`R�) J`+3/2(n`R�)

J
2
`+1/2(n`R�)

#
, (9)

in terms of Bessel functions J⌫ and K⌫ .
For each partial wave `, there is a threshold radius R

`
th below which there are no bound

states. The threshold is given by

R
`
th =

⇡

2
p
2µV0

J`�1/2,1 , (10)

with J⌫,1 as the first zero of the Bessel function J⌫ . For example, one has R
0
th = 0.41 GeV�1

and R
1
th = 0.80 GeV�1 for A = 16. For a large radius R� , many bound states exist. For A = 16

and R� = 10 GeV�1, we show the energy levels in the left panel and the radial wave functions
for ` = 1 in the right panel of Fig. 1. There are totally 194 bound states, including 12 s-wave
and 12 p-wave bound states. For more excited bound states with a smaller value of |En`|, there
are more nodes in the wave function.

In the limit that kn`R� � 1, the bound state wave function outside the ball is exponentially
small. In this limit, the bound state solution is well-approximated by the infinite well solution,

5

Except that one needs to go beyond the dipole 
approximation
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3.3 General scattering amplitude

We begin by writing the general formula for the scattering amplitude. We then derive the
analytic formulas to calculate the cross sections in two interesting limits: the dipole and low
energy limits.

The electromagnetic coupling of the nucleus to the vector potential is given by the interaction
Hamiltonian

Hint =
1

2µ
Z e [pN · A(xN) + A(xN) · pN] , (16)

where xN and pN are the nucleus position and momentum operators respectively. In the M� �

mA limit, these nucleus operators reduce to X+x and p, where uppercase letters denote center-
of-mass motion and lowercase letters denote relative motion. The scattering matrix element is
then given by

Mn`m =
1

2µ
Z e ✏⇤ ·

Z
d
3
x e

�iq·x [r ⇤
n`m(x) k(x)�  

⇤
n`m(x)r k(x)] , (17)

where ✏ = ✏(q) is the photon polarization satisfying q · ✏(q) = 0 and  k/ n`m are the scat-
tering/bound state wave functions relative to the center of mass respectively. Note that the
scattering and bound state wave functions have di↵erent normalizations and di↵erent mass di-
mensions. The scattering wave function is not normalizable as the incident wave is a plane
wave. The photon momentum and energy have |q| = !n` ⇡ Ek+ |En`|. For a small dark matter
velocity, the kinetic energy is in general smaller than the binding energy and the photon energy
is approximately the binding energy.

The radiative capture cross section in the non-relativistic normalization is then given by

��,n` =
1

v

Z
d⌦

|En`|

8 ⇡2

X

m

|Mn`m|
2
. (18)

In general, one can keep all partial wave functions in the scattering state, expanding e
�iq·x

in partial waves as well and performing the integration to calculate ��,n`. This procedure is
conceptually clear, but practically tedious. Instead, we mainly focus on few parameter regions
with good approximation schemes, derive analytic formulas and present the cross sections based
on them.

The most relevant parameters for radiative capture of the EWS-DMB is the radius R� , the
scattering kinetic energy or momentum k ⌘ |k| and the radiated photon energy q ⌘ |q|. The
three limits are

• Dipole limit: qR� ⌧ 1. In this limit, the wavelength of the emitted photon is much larger
than the radius of the DMB, so that the wave function of the emitted photon becomes
trivial or e�iq·x

! 1.

• Low energy limit: kR� ⌧ 1. In this limit, only the s-wave mode of the scattering state
has a significant contribution.
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Figure 2: Radiative capture cross section as a function of the DMB radius for the oxygen nucleus
with Z = 8 and A = 16 in the dipole approximation. The dominant p-wave bound states and
s-wave scattering states are included in this plot. Two di↵erent dark matter averaged velocities
of v̄ = 10�3 and v̄ = 10�2 are considered.

3.5 Low Energy Limit

In the low energy limit with kR� ⌧ 1, we find it convenient to use integration by parts and the
on-shell photon conditions q · ✏ = 0 to rewrite the amplitude as

Mn`m = �
1

µ
Z e ✏⇤ ·

Z
d
3
x e

�iq·x
 

⇤
n`m(x)r k(x) . (21)

For the dipole factor e�iq·x, we decompose its complex conjugate in spherical harmonics as

e
iq·x =

X

`0,m0

4 ⇡ i`
0
j`0(q r)Y

⇤
`0m0(q̂)Y`0m0(x̂) . (22)

The scattering state wave function for kr ⌧ 1 outside the DMB scales as

 k ⇡

X

`m

ak` (kr)
`
Y

⇤
`m(k̂)Y`m(x̂) ⇡ ak0 Y

⇤
00(k̂)Y00(x̂) , (23)

where ak` are non-zero numerical coe�cients. In other words, for kR� ⌧ 1, the s-wave term
dominates at the boundary of the potential, which can further simplify our calculation. Putting
these pieces together, squaring, summing over polarizations and the final state m number and
integrating over the photon emission angle, we find the cross section is given by

��,n` =
1

v
` (`+ 1) (2`+ 1)

Z
2
↵ |En`|

2 ⇡ µ2 q2

����
Z

dr r j`(q r)Rn`(r)R
0
k0(r)

����
2

(` � 1) . (24)

9
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Figure 2: Radiative capture cross section as a function of the DMB radius for the oxygen nucleus
with Z = 8 and A = 16 in the dipole approximation. The dominant p-wave bound states and
s-wave scattering states are included in this plot. Two di↵erent dark matter averaged velocities
of v̄ = 10�3 and v̄ = 10�2 are considered.

3.5 Low Energy Limit

In the low energy limit with kR� ⌧ 1, we find it convenient to use integration by parts and the
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where ak` are non-zero numerical coe�cients. In other words, for kR� ⌧ 1, the s-wave term
dominates at the boundary of the potential, which can further simplify our calculation. Putting
these pieces together, squaring, summing over polarizations and the final state m number and
integrating over the photon emission angle, we find the cross section is given by
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Figure 4: Radiative capture cross section as a function of the DMB radius for Z = 8, A = 16,
V0 = A⇥ 32 MeV, and v̄ = 10�3 in the low energy limit, in which only s-wave scattering state
is included. The right panel narrows the range to the largest radii considered.

E11 ⇡ 32.7 MeV for R� = 10 GeV�1 and E11 ⇡ 2.2 MeV for R� = 100 GeV�1. As can be seen
from Fig. 3, the radiative capture cross section is dominated by the most excited state of ` = 1
bound states, which is precisely the limit in which the dipole approximation applies. For a fixed
`, the cross section decreases exponentially for deeper bound states with larger binding energy.

In Fig. 4, we show the capture cross section as a function of R� up to a radius slightly
smaller than 2⇡/k ⇡ 2⇡/(Amp v̄) ⇡ 400 GeV�1. Again, one can see a clear oscillation behavior,
which is due to the resonance e↵ects in the scattering state. The cross section envelope has a
mild dependence on the radius, although it is very sensitive to the actual value of R� within
one period of the wave.

It is instructive to compare the radiative capture cross section to the elastic scattering cross
section. Using the phase shift method, the elastic scattering cross section is calculated in the
low energy limit by

�elastic ⇡
4 ⇡

2
[tan (R�)� R� ]

2
, (27)

which has a similar oscillating behavior with the same periodicity. The ratio of the radiative
capture cross section (in the region under computational control) to this value is shown in
Fig. 5, which still has an oscillating behavior. In the dashed and black lines, we guide the
general envelop behavior of this ratio. The general behavior of this ratio as a function of v and
R� has a simple scaling

��/�elastic / v
�1

R
�3/2

, (28)

with the range of radii satisfying the low energy approximation.
Note that as R� is varied, the scattering wave function in each partial wave mode can be

resonantly enhanced when

R� ⇡
J`�1/2,n


, (29)

11
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Figure 5: Ratio of the radiative capture to elastic scattering cross section of DMB in the low
energy limit. The benchmark Z = 8, A = 16, V0 = A ⇥ 32 MeV and v̄ = 10�3 is used. The
dashed and black line has the ratio / R

�3/2
� .

where J⌫,n are Bessel function zeros. The s-wave wave function gets enhanced by a factor of
/k, leading to an enhancement of the radiative capture cross section by (/k)2.

The dependence on the DMB radius of the total radiative capture cross section in the dipole
limit is shown in Fig. 2. Beyond R� ⇡ 12 GeV�1, we work in the low energy approximation.
The dependence on R� in this limit is shown in Fig. 4. Beyond R� ⇡ 100 GeV�1, the low energy
limit is no longer applicable.

3.6 Large Radius Limit

In the large radius limit, the approximations we have used cease to apply and the calculation of
the radiative capture cross section becomes computationally prohibitive. The elastic scattering
cross section, on the other hand, can be determined in this limit by summing our analytic
expression for the partial wave cross section to a su�ciently high partial wave number. As seen
in Ref. [11], it saturates the geometric cross section ⇡R

2
�
up to an O(1) factor. We proceed by

estimating the ratio of the radiative capture cross section to the known elastic cross section in
two di↵erent ways: by extrapolating the ratio shown in Fig. 5 to large radius and by determining
this ratio in neutron capture data. Neither procedure is entirely robust, but they are meant to
provide a guideline for the possibilities.

In the low energy limit, we have found that the ratio of the radiative capture to elastic
scattering cross sections scales as R�3/2

� . Extrapolating this behavior to large R� indicates that

the radiative capture cross section scales as R1/2
� . We estimate that for kR� � 1 the �� should

saturate to

�� ⇠ 60GeV�2
⇥

✓
10�3

v

◆ ✓
R�

105 GeV�1

◆1/2

. (30)

12
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Figure 6: Ratio of the radiative capture to elastic cross sections for neutron capture by three
di↵erent nuclei using the TENDL-2017 model [26, 27].

Alternatively, this ratio can be estimated from neutron radiative capture data (see Fig. 6).
The data are plotted as a function of the incident neutron momentum. Since the relevant
comparison for determining the large R limit is kR � 1, the limit is expected to be reached at
large kinetic energy when the momentum becomes comparable to the e↵ective inverse radius of
the nucleus. Only for relatively heavy elements does radiative capture reach the large kR limit
below the complicated MeV scale. The data are not su�ciently homogeneous across di↵erent
nuclei to determine a clear numerical pattern. Nevertheless, the ratios are seen to follow the
expected qualitative behavior, going to a smooth function in the large kR limit (the region to
the right of the resonance region). The ratios of radiative capture to elastic scattering cross
sections for isotopes of uranium, tungsten and silver are shown in Fig. 6 using the TENDL-2017
model [26, 27]. These nuclei are chosen as cases where there is a significant amount of data that
agree with the model.

4 Prospects for detection

Radiative capture of nuclei by MDM entering the detector deposits significantly more energy
than elastic scattering. The radiation from the initial capture is seen in Fig. 3 to be of order
MeV or larger. Furthermore, excited states are typically produced; their subsequent decay leads
to additional emission totaling around 100s of MeV.

A full study of these signals in individual detectors is beyond the scope of this work. Nev-
ertheless, we consider some basic properties of current and forthcoming detectors to determine
the viability of this signal. Direct detection experiments such as Xenon1T [28] and LZ [29]
should be sensitive to radiative capture as the deposited energy far exceeds their threshold.

13

Obtain the similar behaviors as neutron capture by a 
large nucleus
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Figure 7: Sensitivity of Xenon 1T (blue) [28], LZ (orange) [29], ProtoDUNE (red) [35], ICARUS
(purple) [38], Borexino (green) [39], NO⌫A (brown) [34], JUNO (light blue) [40], Super-
Kamiokande (teal) [36], DUNE (dark blue) [43], and Hyper-Kamiokande (dark green) [32] to
radiative capture of nuclei by MDM. The experiments are listed in order of increasing mass
sensitivity. The dashed lines indicate the sensitivity if at least 5 radiative capture events are
required for each MDM passage through the detector. A running time of 10 years is assumed for
Borexino, Super-Kamiokande, DUNE, and Hyper-Kamiokande, 5 years is assumed for ICARUS
and NO⌫A and one year at the direct detection experiments and ProtoDUNE. The dotted lines
for DUNE and Hyper-Kamiokande indicate the region in which at least one radiative capture
event is expected over the whole running time. The black line indicates the estimated radiative
capture cross section for QCD and EW density MDM.

detector is the average area normal to the DM trajectory over the DM velocity distribution and
uniform position distribution. The e↵ective length Le↵ is the average length of the DM path
through the detector. For detectors with multiple modules, it is assumed that the modules are
su�ciently closely spaced that they operate functionally as a single large detector. Radiative
capture is dominated by the most massive common nuclei in the detector, so we consider only
interactions with these nuclei. The number density of the dominant nuclei are denoted by nA.

Given this analysis strategy, we proceed to determine the region of parameter space to which
each of these detectors is sensitive. We parameterize the models in terms of the MDM mass
and radiative capture cross section of the heaviest nucleus in the detector in question in order
to maintain model independence. Pending a detailed study, we assume that 5 energy deposits
during the MDM passage is reconstructed with 100% e�ciency and is e�ciently separable from
potential backgrounds such as radioactive decays, cosmic rays and neutrinos. The resulting
estimated sensitivity is presented in Fig. 7. We assume a one year running time for Xenon 1T,
LZ, and ProtoDUNE, a 5 year running time at ICARUS and NO⌫A and a 10 year running

16

Working in progress with experimentalists to apply the 
actual data to search for MDM

YB and Berger, 1912.02813
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Only Gravitational Interaction
Phenomenological model parameter space at a heavy 
mass
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Figure 1: The phenomenological dMACHO parameter space is shown in terms of the dMACHO’s

mass M and scale radius R. Here, dMACHOs are assumed to compose 100% of dark matter.

Tests of dMACHOs (gravitational lensing and CMB anisotropy from baryon accretion) lead to

an exclusion of the shaded regions. For comparison, we also show the black hole Schwarzschild

radius, lines of constant energy density – nuclear (10 MeV/fm3), atomic (1 g/cm3), and local

dark matter energy density (0.4 GeV/cm3) – and the expected mass-radius relation for dark

quark nuggets [17].

Schwartzchild radius, RS = 2GNM . A PBH can be treated as a point mass on larger length

scales, and its mass density can be written as ⇢(x) = M �3(x). The enclosed mass function has
fM(r) = M for r > RS. While our results will apply also to the case of a PBH, we are primarily

interested in extended dMACHOs for which R � RS.

Quark nuggets. Another class of compelling dMACHO candidates includes the QCD quark

nugget [5], the axion quark nugget [15], the six-flavor quark nugget [16], and the dark quark

nugget [17]. These compact objects contain a gas of interacting fermions in the unconfining

phase supported by their degeneracy pressure to balance the external vacuum pressure. The

5
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Figure 2: Left panel: We show the function x� ↵(x) for di↵erent values of � = R/RE. Solving

y = x � ↵(x) determines the number and location of images. We assume a uniform dMACHO

mass density profile. Right panel: We show the magnification factor µ as a function of y for

several values of �. The black and dotted line is the function for a point-like mass in Eq. (3.1).

The spikes for � = 0.5 and 0.8 are due to caustic crossing with d↵/dx = 1 in Eq. (3.8).
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Figure 3: The same as Fig. 2 but for dMACHO with an exponential mass density profile.
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RE = 4 GN M κ(1 − κ) DS ≈ (1.51 × 1014 cm) × (
κ(1 − κ)

1/2 ) ( DS

50kpc)
1/2

( M
M⊙ )

1/2

Einstein radius:

12

Figure 2.1: Sketch of a typical gravitational lensing system (Figure from Bartelmann
& Schneider, 2001).

Remark:
It is not guaranteed that the relation between physical size, distance and angular size
can be written as [physical size] = [angular size] · [distance] if space is curved. It
is however possible to define distances in curved spacetime such that this relation
from Euclidean space holds. Then, however, distances are not additive, such that
DL + DLS 6= DS.

We first define an optical axis, indicated by the dashed line, perpendicular to the lens
and source planes and passing through the observer. Then we measure the angular
positions on the lens and on the source planes with respect to this reference direction.

Consider a source at the angular position ~�, which lies on the source plane at a distance
~⌘ = ~�DS from the optical axis. The deflection angle ~̂↵ of the light ray coming from
that source and having an impact parameter ~⇠ = ~✓DL on the lens plane is given by
Eq. (1.36). Due to the deflection, the observer receives the light coming from the source
as if it was emitted at the angular position ~✓.

If ~✓, ~� and ~̂↵ are small, the true position of the source and its observed position on the
sky are related by a very simple relation, obtained by a geometrical construction. This
relation is called the lens equation and is written as

~✓DS = ~�DS + ~̂↵DLS , (2.4)

where DLS is the angular diameter distance between lens and source.

Defining the reduced deflection angle

~↵(~✓) ⌘ DLS

DS
~̂↵(~✓) , (2.5)

from Eq. (2.4), we obtain

~� = ~✓ � ~↵(~✓) . (2.6)

Bartelmann and Schneider, 2001

dS

y ≡ dS/RE χ ≡ R /RE
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Figure 4: This figure shows the threshold value of the dimensionless source position on the

lens plane, yT, as a function of the dMACHO radius, � = R/RE. If a given experiment can

detect su�ciently large magnification factors µ � µT = 1.34 then it can infer the presence

of a dMACHO with a su�ciently small value of y  yT. We show two dMACHO models,

corresponding to a uniform density and an exponential density profile, and we compare with

the case of a point-like black hole for which yT ⇡ 1 and there is no analog of � = R/RE.

3.4 Optical depth and microlensing constraints

We now address how observational constraints on microlensing events can be used to place limits

on dMACHOs in the Milky Way halo. In particular, we seek to recast existing limits on PBH

dark matter. To do so, we will define an “optical depth” parameter, ⌧ . For PBHs we calculate ⌧

as a function of M and the dark matter fraction fDM (since R = RS ⌧ RE is not variable), and

for dMACHOs we calculate it as a function of M and R, assuming fDM = 1. Thus using ⌧ as a

bridge, we recast PBH limits in the (M, fDM) plane into dMACHO limits in the (M,R) plane.

For a given source star, the “optical depth” ⌧ counts the average number of lensing masses

that reside within the lensing tube; i.e. the axially-symmetric region of space between the

observer and the source that has distance-dependent radius yTRE. We can write the optical

depth as

⌧ = DOS

Z 1

0

d nlens(~rO + DOS n̂L) ⇡ y2T

⇣
R/RE(), µT

⌘
R2

E() , (3.16)

where DOS is the distance from the observer to the source, nlens(~r) is the number density of

lenses at location ~r, ~rO is the location of the observer, n̂L is a unit vector pointing toward the

source, yT is shown in Fig. 4 for µT = 1.34, and RE() is the Einstein radius (3.2) of a lens
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Figure 5: The ratio of the optical depth for dMACHO over the black hole case. The source

location is chosen to be LMC with a distance to the Earth around 50 kpc.

this can be seen from the features of Fig. 5. For a given mass, the constraints on fpbh for

the PBH case mean ⌧dMACHO/⌧PBH < fmax
pbh assuming that dMACHO accounts for 100% of dark

matter. For a value of fmax
pbh below but not close to 1, the intersecting values of R from the curves

in Fig. 5 are very close to the end points of the curves or values in Eq. (3.14). For µT =1.34,

one has �uniform
T ⇡ 3.32 and �expon

T ⇡ 1.36. So, for the uniform density profile, the constraints

on dMACHO radii from EROS/MACHO [31] with DOS ⇡ 50 kpc for LMC can be recast into

R & (5.0⇥ 1014 cm) (M/M�)
1/2 , 0.6⇥ 10�7 M� < M < 15M� [EROS/MACHO] ,(3.18)

with a factor of 2.4 smaller for the exponential profile. We note that once a PBH mass is

constrained by a certain microlensing experiment, the constraints on dMACHO radius will be

approximately given by the above formula and insensitive to how small fpbh is constrained. For

the Subaru/HSC [33], M31 has been used as the source location with DOS ⇡ 770 kpc. For

OGLE [34], the sources in the MW bulge have been used with roughly the average distance to

be around 8 kpc. The recast limits on R from them are

R & (2.0⇥ 1015 cm) (M/M�)
1/2 , 3.6⇥ 10�12 M� < M < 1.2⇥ 10�5 M� [Subaru/HSC] ,

R & (2.0⇥ 1014 cm) (M/M�)
1/2 , 1.5⇥ 10�7 M� < M < 0.3M� [OGLE] . (3.19)

In Fig. 6, we summarize the constraints on the dMACHO radius based on the three most-

constraining microlensing experiments. In this figure, we have assumed that 100% of dark matter

is made of dMACHOs. If the dMACHO is only a fraction of dark matter, the constrained range
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Figure 4: This figure shows the threshold value of the dimensionless source position on the

lens plane, yT, as a function of the dMACHO radius, � = R/RE. If a given experiment can

detect su�ciently large magnification factors µ � µT = 1.34 then it can infer the presence

of a dMACHO with a su�ciently small value of y  yT. We show two dMACHO models,

corresponding to a uniform density and an exponential density profile, and we compare with

the case of a point-like black hole for which yT ⇡ 1 and there is no analog of � = R/RE.

3.4 Optical depth and microlensing constraints

We now address how observational constraints on microlensing events can be used to place limits

on dMACHOs in the Milky Way halo. In particular, we seek to recast existing limits on PBH

dark matter. To do so, we will define an “optical depth” parameter, ⌧ . For PBHs we calculate ⌧

as a function of M and the dark matter fraction fDM (since R = RS ⌧ RE is not variable), and

for dMACHOs we calculate it as a function of M and R, assuming fDM = 1. Thus using ⌧ as a

bridge, we recast PBH limits in the (M, fDM) plane into dMACHO limits in the (M,R) plane.

For a given source star, the “optical depth” ⌧ counts the average number of lensing masses

that reside within the lensing tube; i.e. the axially-symmetric region of space between the

observer and the source that has distance-dependent radius yTRE. We can write the optical

depth as

⌧ = DOS

Z 1

0

d nlens(~rO + DOS n̂L) ⇡ y2T

⇣
R/RE(), µT

⌘
R2

E() , (3.16)

where DOS is the distance from the observer to the source, nlens(~r) is the number density of

lenses at location ~r, ~rO is the location of the observer, n̂L is a unit vector pointing toward the

source, yT is shown in Fig. 4 for µT = 1.34, and RE() is the Einstein radius (3.2) of a lens
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Optical depths drop dramatically as R ≥ 𝒪(RE)



32

Gravitational Lensing

10- 10-9 10-5 0.1

109

1011

1013

1015

Figure 6: The constraints on dMACHO radii as a function of dMACHO mass based on mi-

crolensing experiments, assuming that dMACHO contributes 100% of dark matter. The uniform

density profile is used here, while the exponential profile has a smaller upper limit by a factor

of around 2.4.

of dMACHO mass from each experiment shrinks and approximately matches the corresponding

range for PBH with the same fraction.

Before we end this section, let us discuss what future observations could be used to probe

even larger dMACHOs. Recall that the lower limit on the dMACHO’s scale radius, R > �TRE,

can be strengthened if RE is increased or if µT is decreased, which would increase �T via

Eqs. (3.14) and (3.15). To increase RE through Eq. (3.2), one could look for a system that’s

further away from Earth, but this comes at the cost of a reduction in the source flux, making it

harder to measure the light curve. To decrease µT, one can look for telescopes with exceptional

photometric precision [28, 35]; taking µT � 1 as small as 10�3 increases the upper limit on R by

a factor of 17 compared to µT = 1.34.

4 Accretion of baryonic matter

In the previous section we have studied the e↵ect of a dMACHO’s gravitational influence on

light through the phenomenon of gravitational lensing, and in this section we turn our attention

to the dMACHO’s influence on matter. As gravitational sources, dMACHOs can accumulate

matter inside and around themselves, and since the accreted matter is hotter than the surround-

ing medium, the dMACHOs will develop a “glowing” halo of baryonic matter. In this section we

first calculate the density, temperature, and ionization profiles of the accreted baryonic matter;

15

Below  , there is no lensing constraint∼ 10−11 M⊙

Other lensing systems to improve the limits in the future
Dror, Ramani, et. al, 1901.04490Dai, Venumadhav, et. al, 1804.03149
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Accretion of Baryonic Matter
Large and localized gravitational potential by MDM can 
accrete ordinary baryons, which are hot and can radiate 
photons to change the electron recombination history

For PBH, there are many studies along this direction with 
either spherical or non-spherical accretion. In our study, 
we take spherical accretion for simplicity

For PBH, Bondi accretions have been used (see Ali-Haimoud 
and Kamionkowski, 1612.05644). To obtain stationary solutions, 
we implement the hydrostatic approximation

ρ ·v + ρ v v′ + P′ = ρg

·ρ +
1
r2 (r2ρv)′ = 0

ρ(ϵ/ρ)∙ + ρ v (ϵ/ρ)′ + P
1
r2 (r2v)′ = ·q

GNM̃(r)
r2

+ γ K ρ(r)γ−2 dρ
dr

= 0
v → 0
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Figure 8: We show mass density profiles of baryonic matter that has accreted onto a dMACHO

and a black hole (BH). The dMACHO profiles are calculated using the hydrostatic approxi-

mation, and the BH profiles are calculated using the Bondi approximation. The profiles are

calculated including both the outer adiabatic region (� = 5/3) and the inner adiabatic region

(� = 13/9), and assuming gdrag = 0, and q̇ = 0. The colored curves correspond to a dMACHO

with radius R = RS ⌧ RB (red), R = 0.01RB (purple), and R = 0.1RB (blue), while the black

curve corresponds to a BH. Note that ⇢ / r�3/2 for the BH and the outer adiabatic region of

the ultra-compact dMACHO, but ⇢ / r�9/4 for the inner adiabatic region of the ultra-compact

dMACHO. The transition radius, rrel, is when electrons change from non-relativistic (outer) to

relativistic (inner) ones. Parameters are chosen for sake of illustration; in practice R ⌧ RB.

However, we would argue that Bondi accretion is not the appropriate model for accretion onto

a dMACHO. Since there is no event horizon, the infalling matter is not absorbed, but rather it

must bounce back or flow outward, implying a time-dependent solution. Instead we have used

the hydrostatic approximation to study accretion onto dMACHOs in this work. In terms of the

dimensionless accretion rate, the hydrostatic approximation corresponds to the limit � ! 0.

Intuitively, the build up of accreted matter around the dMACHO provides a radiation pressure

that supports a static configuration with negligible flow velocity.

To understand quantitatively how the two accretion scenarios di↵er, we have calculated the

density profiles for both hydrostatic and Bondi accretion, and we present these results in Fig. 8

with gdrag = 0, and q̇ = 0. In the outer adiabatic region where � = 5/3, the Bondi solution

gives ⇢(r) / r�3/2 for r ⌧ RB [37], and we have already seen in Eq. (4.23a) and Fig. 7 that the

hydrostatic solution gives ⇢(r) / r�3/2 for rrel < r ⌧ RB. The dMACHO’s hydrostatic density

30

Bondi radius:  with the sound speed RB = GN M/c2
∞

c∞ = 5P∞/3ρ∞
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Figure 9: Left: The luminosity of various dMACHOs as a function of redshift, normalized over

the Eddington luminosity LEdd = 4⇡GNMmp/�T. Here, �T is the Thomson scattering cross

section. Right: We show the change in the global ionization history �xe(z) due to the energy

injection from hot matter accreted around dMACHOs, which are assumed to make up all the

dark matter. The three sets of masses and radii, M and R, are chosen to give �xe ⇡ 10�4 as

z ! 0. For comparison we show the �xe that results from PBH dark matter with M = 102 M�

and fpbh = 1 (dashed blue curve) and with M = 103 M� and fpbh = 10�2 (dashed yellow curve).

All curves in this figures are calculated assuming collisional ionization.

To determine the e↵ect of this energy injection on the ionization history, we use the Peebles

model [55, 56] plus the additional radiation from dMACHOs to solve for the matter temperature

TM and the ionization fraction xe. The coupled equations are written as

(1 + z)H(z)
dTM

dz
= H(z)


2TM +

8⇡2 �T T 4
cmb

45H(z)me

xe

1 + xe

(TM � Tcmb)

�
�

2

3n

1 + 2xe

3
⇢̇dep , (4.49a)

(1 + z)H(z)
dxe

dz
=

1 +KH⇤Hn(1� xe)

1 +KH(⇤H + �H)n(1� xe)
↵B(TM)

"
nx2

e
�

✓
meTM

2⇡

◆3/2

e
� EI

TM (1� xe)

#

�
1� xe

3

⇢̇dep
EI n

, (4.49b)

where H(z) is the Hubble parameter, ⇤H = 8.22458 sec�1 is the decay rate of the metastable

hydrogen 2S state, KH = �3
Ly/(8⇡H(z)), �Ly = 121.5 nm is the wavelength of the Lyman-↵

photon, and ↵B is the case-B recombination coe�cient given below Eq. (4.35). The last term in

each equation accounts for the additional energy deposition from Eq. (4.48), without which we

should go back to the standard cosmological thermal history.

We solve Eq. (4.49) and present the results in the right panel of Fig. 9. For the dMACHO

masses and radii that are shown in this figure, the ionization fraction is enhanced by�xe ⇡ 10�4,
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LEdd = 4πGNMmp/σT

L ≈ 4.1 × 10−6 ×
ρ2

∞ m3/2
p (GNM)7/2

T3
∞ m3/2

e R1/2

dashed blue: M = 102 M⊙, fPBH = 1

dashed yellow: M = 103 M⊙, fPBH = 0.01
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Constraints from CMB anisotropy
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Figure 10: Constraints on the dMACHO mass-radius parameter space inferred from the change

in the cosmic ionization history �xe. We require �xe(z = 50) < 10�4 such that the CMB

anisotropy spectrum is not changed much. Both collisional ionization and photoionization sce-

narios are considered and shown in the plot.

a higher density means that electron-ion scatterings occur more frequently, and this increases

the emissivity (4.38), which grows as nenp ⇠ x2
e
n2
H
. Finally, lower temperature means smaller

thermal velocity and more particles are gravitationally-bounded to the dMACHO. The Milky

Way’s interstellar medium (ISM) can be divided into several categories, which are summarized

in Table 1. For each ISM environment, this table shows the typical temperature, particle num-

ber density, volume filling fraction of the Milky Way, and phase of hydrogen. Molecular clouds

stand out with their extremely low temperatures and high densities, which makes them good

candidates in which to search for glowing dMACHOs.

Let us now assess the prospects for seeing a glowing dMACHO assuming that it sits in a

cold region of the Milky Way. In particular we calculate the luminosity spectrum L⌫ = dL/d⌫

using Eqs. (4.410) and (4.420) with the values of T1, ⇢1, and x̄e from Table 1. The spectra for

dMACHOs with mass M = 0.1M� and several di↵erent dMACHO radii are shown in Fig. 11.

To assess the prospects for detecting this radiation from Earth, we assume that the source

is d = 150 pc away, which is roughly the distance to the nearby molecular cloud known as

38

Assume dMACHO account for 100% dark matter
We require Δxe(z = 50) < 10−4
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Macroscopic dark matter appears in several simple models

Non-trivial phase transitions in the early universe generate 
dark matter in a state different from zero-temperature vacua

For Higgs-portal dark matter, the non-topological soliton 
dark matter is in the electroweak symmetric phase

An experiment with a large volume and a long-exposure 
time would be ideal to search for dark matter balls with 
multi-scattering events up to mass of one gram

Gravitational lensing and CMB experiments probe the 
parameter space from the heavy side till  grams1022



Thanks!
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Abundance of Free Dark Particles
During the chemical equilibrium, the ratio of dark matter 
energy density in the low-temperature phase over the high-
temperature phase has

So, the dark matter fraction in the free particle state is 
dramatically suppressed and negligible

The freeze-out temperature is controlled by the process                             

The freeze-out temperature is low and below ~ 1 GeV                             


