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I.   Chiral gauge theories



Why ? 

Macro and Molecular level Nature:  

e.g.,    D
NA

Parity violation   Microscopic world very precisely described by                            

 Grand Unified theories  SU(5),   SO(10) …   ? 

 (ii), (iii)  are chiral gauge theories * :   they are weakly coupled, 
 consistent in perturbation theory 

Perfectly reasonable (good) theories,  as low-energy effective actions

(ii)

 nontrivial chiral properties

(i)

(iii)

Gauge-anomaly 

cancellation 

As such, they leave mysteries; masses, families, neutrinos, axions, dark matter, 
the origin of the electroweak symmetry breaking, naturalness, etc. etc.

*  Lorentz group   

♦

♦



 40  years (!) of lattice simulations (w/ advanced computers), 

N =2 susy gauge theories (w/ advanced mathematics),  

Significant results on strongly-coupled asymptotically-free gauge theories

QCD     SU(3)  YM  w.  quarks 

25 years since Seiberg-Witten 

♦ All refer to vectorlike gauge theories
cfr. N=1 supersymmetric 

chiral theories;  susy breaking

♦ Surprisingly little is known today about strongly-coupled (AF) chiral 
gauge theories 

A challenge for theorists: understand them better!

Nature may be making use of them in a so-far unknown (to us) way

monopoles and duality

SCFT, XSB  and confinement

confinement, XSB, 

🔵

🔵



Earlier studies

🔵 Tumbling (MAC)

🔵 Complementarity

Confinement ~  Higgs 

🔵 ’t Hooft’s  anomaly matching constraints 

🔵 Appelquist-Cohen-Schmaltz  criterion  (free energy),   

🔵 “a”  theorem   (RG flow)

🔵 Large N

No truly significant progress so far ….

on chiral gauge theories

 Renewed efforts  ☞

♦



SU(N) models  

Confinement ?  / Dynamical Higgs ? 

Flavor symmetry breaking ?   In which pattern ? 

(iii) The third line is the pure flavor U
 

(1)

3 and (U
⌘

(N + 4))

3 anomalies. They are
there even if no 1-form gauging is done.

(iv) The fourth line, present also for B = 0, would show that, if the first two
lines were absent, U

 ⌘

(1),
 

=

N+2, , ⌘

=

N�2 would all be unbroken as
1

8⇡2

R
tr

˜F 2 2 .

(v) The second line also shows that in the presence of the external A
 

and A
⌘

fields
(which are needed in order to have the color-flavor locked center symmetry),
the 1-form gauge symmetry is broken. This is another manifestation of the
failure of the gauging of the 1-form center symmetry.

We conclude, in view of the new anomalies induced by gauging of the 1-form
color-flavor center symmetry, that the chirally symmetric confined phase of Sec. 3.3
cannot be realized in the infrared, as neither breaking of U

 ⌘

(1) nor of Z
 

= Z
N+2

can be appropriately described, without having vacuum degeneracies/NG bosons.
Thus the color-flavor locked Higgs phase discussed in Sec. 3.4 seems to be strongly
favored as a way of dynamically realizing the symmetries in the infrared.

4 (N , N�) = (0, 1) model

This model was also studied by by Appelquist-Duan-Sannino, by Poppitz and by
ourselves. The matter fermions are

�[ij] , ⌘̃B j , B = 1, 2, . . . , (N � 4) , (4.1)

or
¯

+ (N � 4) . (4.2)

The symmetry is
SU(N)c ⇥ SU(N � 4)f ⇥ U(1) , (4.3)

where the anomaly free U(1) charge is

� : N � 4 ; ⌘̃B j

: �(N � 2) . (4.4)

b0 = 11N � (N � 2)� (N � 4) = 9N + 6 . (4.5)

There are also discrete symmetries

�

=

N�2 ⇢ U
 

(1) ,
⌘

=

N�4 ⇢ U
⌘

(1) . (4.6)

The symmetries of the system is summarized in Table 9.
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Infrared CFT ? 

Hierarchical mass scales generated (tumbling) ? 

(i)

in those theories.2

A key ingredient of these developments is the idea of "gauging a discrete symmetry",
i.e., identifying the field configurations related by the 1-form (or a higher-form) symmetries,
and eliminating the consequent redundancies, effectively modifying the path-integral sum-
mation rule over gauge fields [36, 37]. Since these generalized symmetries are symmetries
of the models considered, even though they act differently from the conventional ones, it is
up to us to decide to "gauge" these symmetries. Anomalies we encounter in doing so, are
indeed obstructions of gauging a symmetry, i.e., a ’t Hooft anomaly by definition. And as
in the usual application of the ’t Hooft anomalies such as the "anomaly matching" between
UV and IR theories, a similar constraint arises in considering the generalized symmetries
together with a conventional ("0-form") symmetry, which has come to be called in recent
literature as a "mixed ’t Hooft anomaly". Another term of "global inconsistency" was also
used to describe a related phenomenon.

In this paper we take a few, simplest chiral gauge theories as exercise grounds, and
ask whether these new theoretical tools can be usefully applied to them, and whether they
provide us with new insights into the infrared dynamics and global symmetry realizations
of these models.3

For clarity of presentation, we focus the whole discussion here on a single class of
models ( ⌘ models [8, 9]). In Sec. 2 we review the symmetry and earlier results on the
possible phases of these theories. In Sec. 3 the symmetry group of the systems is discussed
more carefully, by taking into account its global aspects. Sec. 4 and Sec. 5 contain the
derivation of the anomalies in odd N and even N theories, respectively. In Sec. 6 we
discuss the UV-IR matching constraints of certain 0-form and 1-form mixed anomalies, and
their consequences on the IR dynamics in even N theories. In Sec. 7 the mixed anomalies are
reproduced without using the Stora-Zumino descent procedure adopted in Sec. 6. Summary
of our analysis and Discussion are in Sec. 8. We shall come back to more general classes of
chiral theories in a separate work.

2 The model and the possible phases

The model we consider in this work is an SU(N) gauge theory with Weyl fermions

 {ij} , ⌘Bi , (i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4) , (2.1)

in the direct-sum representation

� (N + 4)
¯

(2.2)

of SU(N). This model was studied in [14, 15], [8, 9].4 This is the simplest of the class of
chiral gauge theories known as Bars-Yankielowicz models [12]. The first coefficient of the

2A careful exposition of these ideas can be found e.g., in [30].
3 In a recent work we discussed mixed anomalies for a class of chiral gauge theories for which a sub-group

of the center of the gauge group does not act on fermions [34].
4A recent application of this class of chiral gauge theories is found in [35].
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For the symmetric and antisymmetric representations,

T ( )

T ( )
= N + 2 ,

T ( )

T ( )
= N � 2 . (1.5)

The conjugate representations have the same Dynkin index.

The symmetric traces appearing in the triangle anomalies are defined by

d(R) = Tr ta
R

tb
R

tc
R

+ (b $ c) . (1.6)

For the symmetric and antisymmetric representations,

d( )

d( )
= N + 4 ,

d( )

d( )
= N � 4 . (1.7)

Furthermore, for a pair of conjugate representations

d(R⇤) = �d(R) . (1.8)

These are all we need in our analysis.

2 Revisiting the (N , N�) = (1, 1) (“ �⌘”) model

We first review the analysis of the model with left-handed fermion matter fields

 {ij} , �
[ij]

, ⌘A
i

, A = 1, 2, . . . 8 , (2.1)

a symmetric tensor, an anti-antisymmetric tensor and eight anti-fundamental multiplets of

SU(N), and add a few new comments with respect to [1].4 It is asymptotically free, the

first coe�cient of the beta function being,

b
0

=
1

3
[11N � (N + 2)� (N � 2)� 8] =

9N � 8

3
. (2.2)

It is a very strongly coupled theory in the infrared and unlikely to flow into an infrared-

fixed point CFT. A nonvanishing instanton amplitude

h  . . . �� . . .�⌘...⌘i 6= 0 (2.3)

involves N + 2  ’s, N � 2 �’s and 8 ⌘’s.

4Earlier studies on this model can be found in [6, 7, 11].
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ourselves to SU(N) gauge theories with a set of Weyl fermions in a complex representation

of the gauge group. Also only asymptotically free type of models will be considered, as

weakly coupled infrared-free theories can be reliably analyzed in perturbation theory, as

in the case of the standard electroweak model. For simplicity we shall restrict ourselves

to various irreducibly chiral2 SU(N) theories, with N
 

fermions  {ij} in the symmetric

representation, N
�

fermions �
[ij]

in the anti-antisymmetric representation, and a number

of anti-fundamental (or fundamental) multiplets, ⌘A
i

(or ⌘̃A i).3 The number of the latter

is fixed by the condition that the gauge group be anomaly free.

Figure 1 gives a schematic representation of the various irreducibly SU(N) chiral the-

ories we shall be interested in. Both N
 

and N
�

can go up to 5 without loss of asymptotic

freedom for large N . The ones we will explicitly consider are summarized in Table 1 with

their b
0

coe�cient. The gauge interactions in these models become strongly coupled in the

N
�

N
 

 �⌘

 �̃⌘

 �⌘̃

 ⌘

�⌘̃

Figure 1: A class of chiral QCD theories at large-N in the plane (N
 

, N
�

).

infrared. There are no gauge-invariant bifermion condensates, no mass terms or potential

terms (of renormalizable type) can be added to deform the theories, no ✓ parameter exists.

The main question we would like to address ourselves, given a model of this sort, is how to

solve the ’t Hooft anomaly matching conditions in the IR and if there are more than one

apparently possible dynamical scenarios, all consistent with the matching conditions.

2For example we do not consider addition of fundamental-antifundamental pairs of fermions. Models
of this type, in the simplest cases (N , N�) = (1, 0), (0, 1), have been studied in [9].

3Let us use the index A,B, . . . for flavor, and the index i, j, . . . for color, below.

4

How to realize SU(8) symmetry ?!?

AF,  no masses, potential,  no     angle, unique vacuum

(ii)

(iii)

(iv)

models

…  …

(1,0) model

Model 3b
0

(1, 1) 9N � 8
(1, 0) 9N � 6
(2, 0) 7N � 12
(3, 0) 5N � 18
(0, 1) 9N + 6
(0, 2) 7N + 12
(0, 3) 5N + 18
(2, 1) 7N � 14
(1,�1) 7N

Table 1: First coe�cients of the beta function.

The paper is organized as follows. In Section 2 we revisit the (N
 

, N
�

) = (1, 1)

model previously considered in [1]. In Sections 3 – 10 we consider respectively the models

(N
 

, N
�

) = (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (2, 1), (1,�1). In Section 11 we discuss

the pion decay constant and a possible new hierarchy mechanism. We conclude in Sec-

tion 11 trying to draw some general lesson for strongly-coupled chiral gauge theories. Con-

sistency check of the many proposed phases with the a-theorem and with the ACS criterion

is done in Appendix A.

1.1 Dynkin index and symmetric traces of the symmetric and

antisymmetric representations in SU(N)

We recall here, for the convenience of the reader, a few well-known Dynkin indices and

symmetric traces which are repeatedly used in the following analyses. The Dynkin index

T (R) is defined by

Tr ta
R

tb
R

= T (R) �
ab

. (1.1)

Summing over a = b, one gets

D(R)C
2

(R) = T (R) (N2 � 1) ,
X

a

ta
R

ta
R

= C
2

(R)
D(R)

, (1.2)

where D(R) is the dimension of the representation, C
2

(R) is the quadratic Casimir. For

the fundamental,

C
2

(R) =
N2 � 1

2N
, D(R) = N , ... T ( ) =

1

2
, (1.3)

and for the adjoint,

C
2

(R) = N , D(R) = N2 � 1 , ... T
adj

= N . (1.4)
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🔵

🔵

🔵

🔵

🔵
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Lessons
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♦ ’t Hooft anomaly matching requirement severely restricts 
possible phases / flavor symmetry realization

♦ (Partial) color-flavor locking,  dynamical Higgs vacua  +  

(partial) dynamical Abelianization :

useful tools for finding the (in general,  non unique) solutions

♦ Still,  need of more powerful theoretical arguments badly felt ….

♦ Tumbling or MAC ?  Not assumed, but looks natural in some cases

♦ A new mass hierarchy ?  

24
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Abstract

Consequences of gauging exact C

k

center symmetries in several simple SU(N)

gauge theories, where k is a divisor of N , are investigated. Models discussed in-

clude: the SU(N) gauge theory with N

f

copies of Weyl fermions in self-adjoint

single-column antisymmetric representation, the well-discussed adjoint QCD, QCD-

like theories in which the quarks are in a two-index representation of SU(N), and a

chiral SU(N) theory with fermions in the symmetric as well as in anti-antisymmetric

representations but without fundamentals. Mixed ’t Hooft anomalies between the

1-form C

k

symmetry and some 0-form (standard) discrete symmetry provide us with

useful information about the infrared dynamics of the system. In some cases they

give decisive indication to select only few possiblities for the infrared phase of the

theory.

1

center symmetries in several

simple SU(N)  gauge theories w/ chiral (or vectorlike) fermions (k = a divisor of N)

Models:

(i)  Fermions in self-adjoint, antisymmetric single-column irreps,

However our conclusion is not modified: (3.13) is actually equivalent to

 

3 �! 1 , (3.15)

in the vacuum with unbroken color�flavor

2 . This feature must be kept in mind in all our

analysis below: the crucial point is that in this paper we gauge only a subgroup of discrete

color center group, which does not act on the fermions 8.

The breaking  

6 !  

2 implies a threefold vacuum degeneracy, if the system confines

(with mass gap) and if in IR there are no massless fermionic degrees of freedom on which
 

6 /
 

2 can act 9. A possible explanation naturally presents itself. As the interactions

become strong in the infrared, it is reasonable to assume that bifermion condensate

h  i ⇠ ⇤3 6= 0 (3.16)

forms. As the field  is in 20 of the gauge group SU(6), a Lorentz invariant bifermion

composite can be in one of the irreducible representations of SU(6), appearing in the

decomposition

⌦ = � �+ . . . . (3.17)

The most natural candidate would be the first, 1, but it can be readily verified that such

a condensate vanishes by the Fermi-Dirac statistics. Another possibility is that   in

the adjoint representation gets a VEV, signaling a sort of dynamical Higgs mechanism

[24, 25, 26]. Even though such a condensate should necessarily be regarded as a gauge

dependent expression of some gauge invariant VEV (see below), it unambiguously signals
10 the breaking of global, discrete chiral symmetry as

 

6 !  

2 , (3.18)

with broken  

6 /
 

2 acting on the degenerate vacua. Four-fermion, gauge-invariant con-

densates such as

h    i 6= 0 , or h ̄ ̄  i 6= 0 , (3.19)

might also form, first of which also breaks  

6 in the same way. The condensate (3.16) thus

leads to threefold vacuum degeneracy, consistently with (3.13) implied by the  

6 � C

3

8The situation is subtler if one tries to gauge the full color center group, see [20].
9Here, as in the rest of the paper, we do not consider the more “exotic” possibility that discrete anomaly

matching may be achieved with a topological field theory or by a CFT in the IR.
10Note that the global symmetry group  

6 commutes with the color SU(6): there is no way a gauge

transformation eliminates the nontrivial properties of the condensate under  
6 .

9

SU(6) w/  NF  =1,2,…;       SU(N)

(ii)   Adjoint QCD  SU(N) with NF    

instanton number.

Here we are interested in theories with matter fields, but with some residual center

symmetry. This means that fractional instantons can be constructed, but not of the one

of the minimal charge. For the SU(N) (N even) theory with N
f

left-handed fermions  

in the self-adjoint representation the remaining center symmetry is C

N
2

which means that

only even numbers of fluxes are allowed on each 2-torus. With n12 = n34 = 2 units of

fluxes we have a toron with charge 4
N

. This can be combined with any integer number

of instanton charge to construct the minimal possible instanton charge gcd (4,N)
N

and this is
4
N

= 1
`

for N = 4` and 2
N

= 1
2`+1 when N = 4`+ 2. The symmetry is then broken as

U(1)
 

�!  

2TRNf
�!  

2TRNf
gcd (4,N)

N

(3.81)

first by the ABJ anomaly and instantons, and then by the gauging of the 1-form symmetry.

This result agrees with what was found above by use of the C

N
2

gauge fields (B(2)
c

, B
(1)
c

).

More about these issues at the end, see Discussion (Section 7).

4 Adjoint QCD

SU(N) theories with N
f

Weyl fermions � in the adjoint representation have been the object

of intense study, and our comments here will be brief. In this model, the color center 1-

form C

N

symmetry is exact, therefore can be entirely gauged. The system possesses also

a nonanomalous 0-form discrete chiral symmetry,

�

2NfN
: �! e

2⇡i
2NfN k

� , k = 1, 2, . . . , 2N
f

N . (4.1)

We introduce a set of gauge fields

• A
�

: �

2NfN
1-form gauge field, to formally describe (4.1);

• B
(2)
c

: ZC

N

2-form gauge field.

The Abelian 6D anomaly is

1

24⇡2

Z
tradj

�
F̃ � B(2)

c

� dA
�

�3

=
2NN

f

8⇡2

Z
tr(F̃ � B(2)

c

)2 ^ dA
�

+ . . .

=
2NN

f

8⇡2

Z
trF̃ 2 ^ dA

�

� 2N2N
f

8⇡2

Z
(B(2)

c

)2 ^ dA
�

. . . . (4.2)

As

A
�

= dA
(0)
�

, �A
(0)
�

2 2⇡i

2NN
f

(4.3)

20

in adjoint repr

(iii)  “QCD” with NF   pairs of  “quarks” in 

Another possibility is to start from theN = 2 supersymmetric SU(2) Yang-Mills theory,

where many exact results for the infrared e↵ective theory are known [32, 33]. It can be

deformed to N = 1 theory by a mass perturbation, yielding a confining, chiral symmetry

breaking vacua. For the exact calculation of gauge fermion condensates h��i from this

viewpoint, see [39, 40]. The pure N = 2 theory can also be deformed directly to N = 0

[12], to give indications about N
f

= 2 adjoint QCD.

5 QCD with quarks in a two-index representation

Consider now SU(N), N even, with N
f

pairs of ”quarks” in symmetric (or antisymmetric)

representations. Namely the left-handed matter fermions are either

 ,  ̃ = � ¯
(5.1)

or

 ,  ̃ = �

¯

(5.2)

(the quarks in standard QCD are in � ¯
). The first beta function coe�cients are

b0 =
11N � 2N

f

(N ± 2)

3
. (5.3)

The k = N

2 element of the center
N

does not act on  ’s, i.e., there is an exact

C

2 ⇢ C

N

(5.4)

center symmetry.15 On the other hand, there is a discrete axial symmetry

 

2Nf (N±2) :  ! e
2⇡i

2Nf (N±2)  ,  ̃ ! e
2⇡i

2Nf (N±2)  ̃ , (5.5)

preserved by instantons. The ± signs above refer to two cases Eq. (5.1) and Eq. (5.2),

respectively.

Let us consider for simplicity N
f

= 1 and consider a 1-form gauging of the exact C

2 .

The external background fields are

• A
 

:  

2(N±2) 1-form gauge field,

• B
(2)
c

: ZC

2 2-form gauge field.

15This aspect has been considered by Cohen [47], in particular in relation with the possible existence of
an order parameter for confinement.

23

Another possibility is to start from theN = 2 supersymmetric SU(2) Yang-Mills theory,

where many exact results for the infrared e↵ective theory are known [32, 33]. It can be

deformed to N = 1 theory by a mass perturbation, yielding a confining, chiral symmetry

breaking vacua. For the exact calculation of gauge fermion condensates h��i from this

viewpoint, see [39, 40]. The pure N = 2 theory can also be deformed directly to N = 0

[12], to give indications about N
f

= 2 adjoint QCD.

5 QCD with quarks in a two-index representation

Consider now SU(N), N even, with N
f

pairs of ”quarks” in symmetric (or antisymmetric)

representations. Namely the left-handed matter fermions are either

 ,  ̃ = � ¯
(5.1)

or

 ,  ̃ = �

¯

(5.2)

(the quarks in standard QCD are in � ¯
). The first beta function coe�cients are

b0 =
11N � 2N

f

(N ± 2)

3
. (5.3)

The k = N

2 element of the center
N

does not act on  ’s, i.e., there is an exact

C

2 ⇢ C

N

(5.4)

center symmetry.15 On the other hand, there is a discrete axial symmetry

 

2Nf (N±2) :  ! e
2⇡i

2Nf (N±2)  ,  ̃ ! e
2⇡i

2Nf (N±2)  ̃ , (5.5)

preserved by instantons. The ± signs above refer to two cases Eq. (5.1) and Eq. (5.2),

respectively.

Let us consider for simplicity N
f

= 1 and consider a 1-form gauging of the exact C

2 .

The external background fields are

• A
 

:  

2(N±2) 1-form gauge field,

• B
(2)
c

: ZC

2 2-form gauge field.

15This aspect has been considered by Cohen [47], in particular in relation with the possible existence of
an order parameter for confinement.

23

(iv)  Fermions in   

forms, even though the bi-fermion condensate itself (5.14) breaks the discrete symmetry

more strongly,
 

2(N±2) �!
 

2 . (5.15)

6 Chiral models with

N�4
k  {ij}

’s and

N+4
k �̄[ij]’s

Let us consider now SU(N) gauge theories with Weyl fermions in the complex representa-

tion, N�4
k

 {ij}’s and N+4
k

�̄[ij],

N � 4

k
� N + 4

k

¯

, (6.1)

where k is a common divisor of (N � 4, N + 4) and N � 5. With this matter content the

gauge anomaly cancels. Asymptotic freedom requirement

11N � 2

k
(N2 � 8) > 0 , (6.2)

leaves a plenty of possibilities for (N, k). Two particularly simple models which we analyze

in the following are:

(i) (N, k) = (6, 2): SU(6) theory with

� 5

¯

; (6.3)

(ii) (N, k) = (8, 4): SU(8) model with

� 3

¯

. (6.4)

6.1 SU(6) theory with 21� 5⇥ 15⇤

Classical continuous flavor symmetry group is

SU(5)⇥ U(1)
 

⇥ U(1)
�

. (6.5)
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The integration over closed 4 cycles give this time

1

8⇡2

Z
trF̃ 2 2 ,

1

8⇡2

Z
(B(2)

c

)2 2
4

. (5.46)

Note that, in contrast to all other cases studied in this paper (except for the SU(4) model

in Section 2.2), the 1-form gauging of the exact ZC

2 center symmetry this time does not lead

to the mixed anomalies, i.e., does not imply breaking of the discrete  

10 or
�

18 symmetries.

It does not give any new information on the infrared dynamics.

Because of the di�culties in satisfying the conventional ’t Hooft anomaly constraints,

one is led to believe that the symmetry of the model (5.40) is spontaneously broken in

the infrared, by some condensate. It is possible that the vacuum (or vacua) is (are) char-

acterized by four-fermion condensates, but the simplest scenario seems to be dynamical

Abelianization, triggered by a bi-fermion condensate,

h �i (5.47)

in color contraction

⌦

¯

= + . . . , (5.48)

i.e., in the adjoint representation of color SU(8). The global symmetries could be broken

as

SU(3)⇥ U(1)
 �

⇥ 2 �! SU(2)⇥ U(1)0
 �

, (5.49)

where U(1)0
 �

is an unbroken combination of SU(3) and U(1)
 �

. In this case the system

may dynamically Abelianize completely [25, 26]. The conventional ’t Hooft anomaly condi-

tions are satisfied by the fermion components which do not condense and remain massless,

in a simple manner, as in the model considered in the previous subsection.

6 Discussion

In this paper symmetries and dynamics of several gauge theories which possess an exact

center symmetry have been studied. Let us consider a general setup which includes all the

cases studied here. We consider an SU(N) gauge theory with matter content consisting

of Weyl fermions  
i

in representations R
i

and multiplicities N
f,i

with i = 1, . . . , n
R

where

n
R

is the number of di↵erent representations (in the cases discussed n
R

has been at most

2). We consider only cases in which the gauge anomaly cancels and where b0 is positive
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Abstract

Consequences of gauging exact C

k

center symmetries in several simple SU(N)

gauge theories, where k is a divisor of N , are investigated. Models discussed in-

clude: the SU(N) gauge theory with N

f

copies of Weyl fermions in self-adjoint

single-column antisymmetric representation, the well-discussed adjoint QCD, QCD-

like theories in which the quarks are in a two-index representation of SU(N), and a

chiral SU(N) theory with fermions in the symmetric as well as in anti-antisymmetric

representations but without fundamentals. Mixed ’t Hooft anomalies between the

1-form C

k

symmetry and some 0-form (standard) discrete symmetry provide us with

useful information about the infrared dynamics of the system. In some cases they

give decisive indication to select only few possiblities for the infrared phase of the

theory.

1

We study (Part A) :



Results

(i)  SU(6)  theory with a single Weyl fermion in 20 

However our conclusion is not modified: (3.13) is actually equivalent to

 

3 �! 1 , (3.15)

in the vacuum with unbroken color�flavor

2 . This feature must be kept in mind in all our

analysis below: the crucial point is that in this paper we gauge only a subgroup of discrete

color center group, which does not act on the fermions 8.

The breaking  

6 !  

2 implies a threefold vacuum degeneracy, if the system confines

(with mass gap) and if in IR there are no massless fermionic degrees of freedom on which
 

6 /
 

2 can act 9. A possible explanation naturally presents itself. As the interactions

become strong in the infrared, it is reasonable to assume that bifermion condensate

h  i ⇠ ⇤3 6= 0 (3.16)

forms. As the field  is in 20 of the gauge group SU(6), a Lorentz invariant bifermion

composite can be in one of the irreducible representations of SU(6), appearing in the

decomposition

⌦ = � �+ . . . . (3.17)

The most natural candidate would be the first, 1, but it can be readily verified that such

a condensate vanishes by the Fermi-Dirac statistics. Another possibility is that   in

the adjoint representation gets a VEV, signaling a sort of dynamical Higgs mechanism

[24, 25, 26]. Even though such a condensate should necessarily be regarded as a gauge

dependent expression of some gauge invariant VEV (see below), it unambiguously signals
10 the breaking of global, discrete chiral symmetry as

 

6 !  

2 , (3.18)

with broken  

6 /
 

2 acting on the degenerate vacua. Four-fermion, gauge-invariant con-

densates such as

h    i 6= 0 , or h ̄ ̄  i 6= 0 , (3.19)

might also form, first of which also breaks  

6 in the same way. The condensate (3.16) thus

leads to threefold vacuum degeneracy, consistently with (3.13) implied by the  

6 � C

3

8The situation is subtler if one tries to gauge the full color center group, see [20].
9Here, as in the rest of the paper, we do not consider the more “exotic” possibility that discrete anomaly

matching may be achieved with a topological field theory or by a CFT in the IR.
10Note that the global symmetry group  

6 commutes with the color SU(6): there is no way a gauge

transformation eliminates the nontrivial properties of the condensate under  
6 .
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in the sense of a mixed ’t Hooft anomaly: there is an obstruction to gauging such a C

N
2

discrete center symmetry, while trying to maintain the global  

6Nf
symmetry. .

3.1.1 N
f

= 1

Let us further restrict ourselves to SU(6) theory with a single left-handed fermion in the

representation, 20. This model was considered recently in [18]. A good part of the analysis

below indeed overlaps with [18]; nevertheless, we discuss this simplest model with certain

care, in order to fix the ideas, to recall the basic techniques and notations, and to discuss

physic questions involved.

There are no continuous nonanomalous symmetries in this model. There is an anoma-

lous U(1)
 

symmetry whose nonanomalous subgroup is the  

6 symmetry given by

 

6 :  ! e
2⇡i
6 j , j = 1, 2, . . . , 6 . (3.3)

The system possesses also an exact center symmetry which acts on Wilson loops as

C

3 : ei
H
A ! e

2⇡i
6 kei

H
A , k = 2, 4, 6 , (3.4)

and which does not act on  .

This is an example of generalized symmetries (in this case, a 1-form symmetry), which

have received a considerable (renewed) attention in the last several years. In particular,

the central idea is that of gauging a discrete symmetry (such as C

3 here), i.e., that of

identifying field configurations related by those symmetries, and e↵ectively modifying the

path-integral sum over them. If a center C

k

symmetry is gauged, SU(N) gauge theory

is replaced by SU(N)/
k

theory. The basic aspects of such a procedure were reviewed in

Sec. 2.

Let us now apply this method to our simple SU(6) toy model, to study the fate of

the unbroken  

6 symmetry (3.3), in the presence of the C

3 gauge fields. The Abelian 6D

anomaly takes the form 6

1

24⇡2
tr20

�
F̃ � B(2)

c

� dA
 

�3

=
6

8⇡2
tr
�
F̃ � B(2)

c

�2 ^ dA
 

+ . . .

=
6

8⇡2
trF̃ 2 ^ dA

 

� 6N

8⇡2
(B(2)

c

)2 ^ dA
 

+ . . . (3.5)

where C

3 gauge fields satisfy

3B(2)
c = dB(1)

c , (3.6)

6The trace tr without specification of the representation means that it is taken on the fundamental, N .
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(0-form) (1-form)  & symmetries!

Mixed anomaly implies XSB

invariant under the U(1) 1-form gauge transformation,

B(2)
c 7! B(2)

c + d�c , B(1)
c 7! B(1)

c + 3�c , (3.7)

1

2⇡

Z

⌃2

d�c 2 . (3.8)

The factor 6 in (3.5) is twice the Dynkin index of 20 (see Appendix A). A
 

is a U(1) gauge

field, formally introduced to describe the  

6 discrete symmetry transformations.

The first term in (3.5) is clearly trivial, as

1

8⇡2

Z
trF̃ 2 2 , A

 

= dA
(0)
 

, �A
(0)
 

=
2⇡  

6

6
. (3.9)

This corresponds to the standard gauge anomaly that breaks U(1)
 

�!  

6 .

The second term in (3.5) shows that �A(0)
 

gets multiplied by

� 6N

8⇡2

Z
(B(2)

c

)2 = �6N
�1
3

�2
= �6

2

3
. (3.10)

The crucial step used here is the flux quantization of the B
(2)
c

field

1

8⇡2

Z
(B(2)

c

)2 =
�1
3

�2
, (3.11)

which follows from (3.6)-(3.8) 7. The global chiral  

6 symmetry

�A
(0)
 

=
2⇡`

6
, ` = 1, 2, . . . , 6 (3.12)

is therefore reduced to a  

2 invariance obtained restricting to the elements ` = 3, 6,

 

6 �!  

2 . (3.13)

This agrees with what was found by [18]. This implies that a confining vacuum with mass

gap, with no condensate formation and with unbroken  

6 , is not consistent.

Strictly speaking, it is not quite correct to say that the flavor symmetry of the model

is  

6 , Eq. (3.3), since
 

2 ⇢  

6 (i.e.,  ! � ) is shared with the color C

2 ⇢ C

6 . The

correct symmetry is
 

6

2
⇠  

3 . (3.14)

7The factor 3 is replaced by k in the case of C
k discrete center gauging considered below for other

systems.

8

However our conclusion is not modified: (3.13) is actually equivalent to

 

3 �! 1 , (3.15)

in the vacuum with unbroken color�flavor

2 . This feature must be kept in mind in all our

analysis below: the crucial point is that in this paper we gauge only a subgroup of discrete

color center group, which does not act on the fermions 8.

The breaking  

6 !  

2 implies a threefold vacuum degeneracy, if the system confines

(with mass gap) and if in IR there are no massless fermionic degrees of freedom on which
 

6 /
 

2 can act 9. A possible explanation naturally presents itself. As the interactions

become strong in the infrared, it is reasonable to assume that bifermion condensate

h  i ⇠ ⇤3 6= 0 (3.16)

forms. As the field  is in 20 of the gauge group SU(6), a Lorentz invariant bifermion

composite can be in one of the irreducible representations of SU(6), appearing in the

decomposition

⌦ = � �+ . . . . (3.17)

The most natural candidate would be the first, 1, but it can be readily verified that such

a condensate vanishes by the Fermi-Dirac statistics. Another possibility is that   in

the adjoint representation gets a VEV, signaling a sort of dynamical Higgs mechanism

[24, 25, 26]. Even though such a condensate should necessarily be regarded as a gauge

dependent expression of some gauge invariant VEV (see below), it unambiguously signals
10 the breaking of global, discrete chiral symmetry as

 

6 !  

2 , (3.18)

with broken  

6 /
 

2 acting on the degenerate vacua. Four-fermion, gauge-invariant con-

densates such as

h    i 6= 0 , or h ̄ ̄  i 6= 0 , (3.19)

might also form, first of which also breaks  

6 in the same way. The condensate (3.16) thus

leads to threefold vacuum degeneracy, consistently with (3.13) implied by the  

6 � C

3

8The situation is subtler if one tries to gauge the full color center group, see [20].
9Here, as in the rest of the paper, we do not consider the more “exotic” possibility that discrete anomaly

matching may be achieved with a topological field theory or by a CFT in the IR.
10Note that the global symmetry group  

6 commutes with the color SU(6): there is no way a gauge

transformation eliminates the nontrivial properties of the condensate under  
6 .
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6 /
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3
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9Here, as in the rest of the paper, we do not consider the more “exotic” possibility that discrete anomaly
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10Note that the global symmetry group  
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transformation eliminates the nontrivial properties of the condensate under  
6 .
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under 2TR : one sees that the 1-form gauging of the center C

N/2 has the e↵ect of making

2TR anomalous, in general. Stated di↵erently, there is a mixed ’t Hooft anomaly between

the 1-form C
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2

gauging and 0-form 2TR symmetry. Its consequence depends on N in a
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instanton number.

Here we are interested in theories with matter fields, but with some residual center

symmetry. This means that fractional instantons can be constructed, but not of the one

of the minimal charge. For the SU(N) (N even) theory with N
f

left-handed fermions  

in the self-adjoint representation the remaining center symmetry is C

N
2

which means that

only even numbers of fluxes are allowed on each 2-torus. With n12 = n34 = 2 units of

fluxes we have a toron with charge 4
N

. This can be combined with any integer number

of instanton charge to construct the minimal possible instanton charge gcd (4,N)
N

and this is
4
N

= 1
`

for N = 4` and 2
N

= 1
2`+1 when N = 4`+ 2. The symmetry is then broken as

U(1)
 

�!  

2TRNf
�!  

2TRNf
gcd (4,N)

N

(3.81)

first by the ABJ anomaly and instantons, and then by the gauging of the 1-form symmetry.

This result agrees with what was found above by use of the C

N
2

gauge fields (B(2)
c

, B
(1)
c

).

More about these issues at the end, see Discussion (Section 7).

4 Adjoint QCD

SU(N) theories with N
f

Weyl fermions � in the adjoint representation have been the object

of intense study, and our comments here will be brief. In this model, the color center 1-

form C

N

symmetry is exact, therefore can be entirely gauged. The system possesses also

a nonanomalous 0-form discrete chiral symmetry,

�

2NfN
: �! e

2⇡i
2NfN k

� , k = 1, 2, . . . , 2N
f

N . (4.1)

We introduce a set of gauge fields

• A
�

: �

2NfN
1-form gauge field, to formally describe (4.1);

• B
(2)
c

: ZC

N

2-form gauge field.

The Abelian 6D anomaly is

1

24⇡2

Z
tradj

�
F̃ � B(2)

c

� dA
�

�3

=
2NN

f

8⇡2

Z
tr(F̃ � B(2)

c

)2 ^ dA
�

+ . . .

=
2NN

f

8⇡2

Z
trF̃ 2 ^ dA

�

� 2N2N
f

8⇡2

Z
(B(2)

c

)2 ^ dA
�

. . . . (4.2)

As

A
�

= dA
(0)
�

, �A
(0)
�

2 2⇡i

2NN
f

(4.3)
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in adjoint repr

(iii)  “QCD” with NF   pairs of  “quarks” in 

Another possibility is to start from theN = 2 supersymmetric SU(2) Yang-Mills theory,

where many exact results for the infrared e↵ective theory are known [32, 33]. It can be

deformed to N = 1 theory by a mass perturbation, yielding a confining, chiral symmetry

breaking vacua. For the exact calculation of gauge fermion condensates h��i from this

viewpoint, see [39, 40]. The pure N = 2 theory can also be deformed directly to N = 0

[12], to give indications about N
f

= 2 adjoint QCD.

5 QCD with quarks in a two-index representation

Consider now SU(N), N even, with N
f

pairs of ”quarks” in symmetric (or antisymmetric)

representations. Namely the left-handed matter fermions are either

 ,  ̃ = � ¯
(5.1)

or

 ,  ̃ = �

¯

(5.2)

(the quarks in standard QCD are in � ¯
). The first beta function coe�cients are

b0 =
11N � 2N

f

(N ± 2)

3
. (5.3)

The k = N

2 element of the center
N

does not act on  ’s, i.e., there is an exact

C

2 ⇢ C

N

(5.4)

center symmetry.15 On the other hand, there is a discrete axial symmetry

 

2Nf (N±2) :  ! e
2⇡i

2Nf (N±2)  ,  ̃ ! e
2⇡i

2Nf (N±2)  ̃ , (5.5)

preserved by instantons. The ± signs above refer to two cases Eq. (5.1) and Eq. (5.2),

respectively.

Let us consider for simplicity N
f
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(2)
c

: ZC
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15This aspect has been considered by Cohen [47], in particular in relation with the possible existence of
an order parameter for confinement.

23

Another possibility is to start from theN = 2 supersymmetric SU(2) Yang-Mills theory,
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(iv)  Fermions in   

forms, even though the bi-fermion condensate itself (5.14) breaks the discrete symmetry

more strongly,
 

2(N±2) �!
 

2 . (5.15)

6 Chiral models with

N�4
k  {ij}

’s and

N+4
k �̄[ij]’s

Let us consider now SU(N) gauge theories with Weyl fermions in the complex representa-

tion, N�4
k

 {ij}’s and N+4
k

�̄[ij],

N � 4

k
� N + 4

k

¯

, (6.1)

where k is a common divisor of (N � 4, N + 4) and N � 5. With this matter content the

gauge anomaly cancels. Asymptotic freedom requirement

11N � 2

k
(N2 � 8) > 0 , (6.2)

leaves a plenty of possibilities for (N, k). Two particularly simple models which we analyze

in the following are:

(i) (N, k) = (6, 2): SU(6) theory with

� 5

¯

; (6.3)

(ii) (N, k) = (8, 4): SU(8) model with

� 3

¯

. (6.4)

6.1 SU(6) theory with 21� 5⇥ 15⇤

Classical continuous flavor symmetry group is

SU(5)⇥ U(1)
 

⇥ U(1)
�

. (6.5)
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SU(6) with

The chiral anomalies are:

U(1)
 

[SU(6)]2 =
T

T
= N + 2 = 8 ,

U(1)
�

[SU(6)]2 =
5T ¯

T
= 5(N � 2) = 20 , (6.6)

meaning that the charges with respect to the unbroken U(1)
 �

⇢ U(1)
 

⇥U(1)
�

symmetry

are

(Q
 

, Q
�

) = (5,�2) . (6.7)

The system has unbroken discrete groups also:

U(1)
 

�! Z 8 , U(1)
�

�! Z�20 . (6.8)

One might wonder if a subgroup of Z 8 ⇥ Z�20 is contained in U(1)
 �

. In fact, U(1)
 �

transformations

 ! e5i↵ , �! e�2i↵� , (6.9)

with

↵ =
2⇡k

40
, k = 1, 2, . . . , 40 , (6.10)

generate the subgroup

 ! e
2⇡i
8 k , �! e�

2⇡i
20 k� (6.11)

of  

8 ⇥ �

20. The anomaly-free symmetry subgroup of U(1)
 

⇥ U(1)
�

is

U(1)
 �

⇥  

8 ⇥ �

20

40
⇠ U(1)

 �

⇥ Z4 . (6.12)

(see (6.26) and (6.27) below). Actually, by considering the overlap with color center and

SU
f

(5) center, the correct anomaly-free symmetry group is:16

SU(5)⇥ U(1)
 

⇥ U(1)
�

ZC

6 ⇥ Zf

5

�! SU(5)⇥ U(1)
 �

⇥ Z4

ZC

6 ⇥ Zf

5

. (6.13)

Let us first check the ’t Hooft anomaly matching condition with respect to the con-

tinuous global symmetries, assuming that the vacuum possesses the full symmetry, (6.13).

16Here we do not gauge the full denominator of the global group, but only the exact subgroup of the
center symmetry. This will be done, for a simpler chiral gauge theory, in [20].
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GF (classical) =

Instantons :🔵

🔵 Conventional ’t Hooft constr.  :  broken

🔵 Gauging the 1-form 

🔵

Actually, a more careful analysis is needed to see which bifemion condensates may occur

in the infrared, in order to satisfy the mixed-anomaly-matching condition. The division

by 40 in the global symmetry group, (6.12), is due to the fact that the subgroup (6.11) is

inside the nonanomalous U
 �

(1). The quotient

4 ⇠ 20 ⇥ 8

40
(6.26)

also forms a subgroup, which can be taken as

 ! e2⇡i
2k
8  = e2⇡i

k
4 ; �! e�2⇡i 5k20� = e�2⇡i k4� , (6.27)

or as

�A
(0)
 

=
2⇡k

4
, �A(0)

�

= �2⇡k

4
, k = 1, 2, 3, 4 , (6.28)

in (6.21), (6.22).

The action of 40 on the 4D partition function can be obtained by setting k = ` =

1, 2, . . . , 40, in Eq. (6.22), or the chiral transformations, Eq. (6.27). The anomaly is pro-

portional to

�
✓
8 · 2⇡k

8
� 20 · 2⇡k

20

◆
1

8⇡2

Z
trF̃ 2 � 6 (B(2)

c

)2
�
= 0 : (6.29)

i.e., 40 remains nonanomalous, even after 1-form gauging of C

2 is done.

On the other hand, 4 is a↵ected by the gauging of the center C

2 symmetry. From

(6.28) and (6.21) one finds that the 4D anomaly is given by

�3 · 2⇡k 1

8⇡2

Z
trF̃ 2 � 6 (B(2)

c

)2
�
= 2⇡k ·

✓
+ 3 · 6 ·

4

◆
. (6.30)

Clearly 4 is reduced to 2 (k = 2, 4) by the 1-form gauging of C

2 .

Having learned the fates of the discrete symmetries

20 ⇥ 8 ⇠ 40 ⇥ 4 (6.31)

under the gauged 1-form center symmetry C

2 , let us discuss now what their implications

on the possible condensate formation in the infrared are. Restricting ourselves to the three

types of bifermion condensates,

 � ,   , �� , (6.32)
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♦ The systematics ?

Because of the di�culties in satisfying the conventional ’t Hooft anomaly constraints,

one is led to believe that the symmetry of the model (6.40) is spontaneously broken in

the infrared, by some condensate. It is possible that the vacuum (or vacua) is (are) char-

acterized by four-fermion condensates, but the simplest scenario seems to be dynamical

Abelianization, triggered by a bi-fermion condensate,

h �i (6.47)

in color contraction

⌦

¯

= + . . . , (6.48)

i.e., in the adjoint representation of color SU(8). The global symmetries could be broken

as

SU(3)⇥ U(1)
 �

⇥ 2 �! SU(2)⇥ U(1)0
 �

, (6.49)

where U(1)0
 �

is an unbroken combination of SU(3) and U(1)
 �

. In this case the system

may dynamically Abelianize completely [25, 26]. The conventional ’t Hooft anomaly condi-

tions are satisfied by the fermion components which do not condense and remain massless,

in a simple manner, as in the model considered in the previous subsection.

7 Discussion

In this paper symmetries and dynamics of several gauge theories which possess an exact

center symmetry have been studied. Let us consider a general setup which includes all the

cases studied here. We consider an SU(N) gauge theory with matter content consisting

of Weyl fermions  
i

in representations R
i

and multiplicities N
f,i

with i = 1, . . . , n
R

where

n
R

is the number of di↵erent representations (in the cases discussed n
R

has been at most

2). We consider only cases in which the gauge anomaly cancels and where b0 is positive

(asymptotically free theories). Each U(1)
 i global symmetry is broken due to instantons

as

U(1)
 i �!

 

2TRi
Nf,i

. (7.1)

Every representation of SU(N) has a certain N -ality associated to it; that is the way  
i

transforms under the center of the gauge group C

N

and corresponds to the number of boxes

in the Young tableaux modulo N . Let n(R
i

) be the N -ality of the representation R
i

. For

example the fundamental representation has N -ality 1, the two-index representations have

N -ality 2 and the adjoint has N -ality 0. We then consider the greatest common divisor
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between N and all the N -alities of the various representations

k = gcd
�
N, n(R1), n(R2), . . . , n(RnR)

�
. (7.2)

If k is greater than 1, then we have a nontrivial 1-form center symmetry C

k

. A toron can

be constructed with n12 = n34 = N

k

units of ’t Hooft fluxes and it has topological charge

equal to
n12 n34

N
=

1

N

N2

k2
=

N

k2
(7.3)

that of the instanton. This can be combined with some integer (instanton) number to yield

the minimal possible topological charge

1

k̃
=

gcd
�
N

2

k

2 , N
�

N
. (7.4)

To see this, set

N = k n , n 2 . (7.5)

then

k̃ =
N

gcd
�
N

2

k

2 , N
� =

kn

gcd
�
n2, kn

� =
k

gcd
�
n, k

� 2 . (7.6)

Now the toron charge is

N

k2
=

n

k
=

n/ gcd(n, k)

k/ gcd(n, k)
=

m

k/ gcd(n, k)
=

m

k̃
, m ⌘ n

gcd(n, k)
2 , (7.7)

where m and k̃ are coprime. Combining this with some instanton number q, one has

9p, 9q 2 ,
N

k2
· p+ q =

m

k̃
· p+ q =

mp+ k̃q

k̃
=

1

k̃
, (7.8)

due to Bézout’s lemma.

If this is a fractional number, i.e. if k̃ is an integer larger than 1, we have generalized

(mixed) anomalies of the type  

2TRi
Nf,i

[ C

k

]2, and the discrete symmetry is further broken

as
 

2TRi
Nf,i

�! 2TRi
Nf,i/k̃

(7.9)

That k̃ is a divisor of 2T
R

can be shown, case by case, by using the formulas given in

Appendix A, as has been verified in all cases encountered.

Note that the existence of a nontrivial center symmetry does not necessarily imply the

presence of generalized (mixed) anomalies, as k and k̃ may be di↵erent. We have seen three

examples in this paper, the SU(4) model in Subsection 3.2, SU(4`) cases in Section 5, and

the SU(8) chiral model in Subsection 6.2, where k̃ = 1 and where no mixed anomalies

arise.
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can be shown, case by case, by using the formulas given in

Appendix A, as has been verified in all cases encountered.

Note that the existence of a nontrivial center symmetry does not necessarily imply the
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arise.
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II.      Generalized ’t Hooft (Mixed) anomalies and 

 the Phases of chiral gauge theories



We study (Part B *) :

♦ Consequences of  gauging the 1-form  center symmetries in some

simple SU(N)  gauge theories w/ chiral fermions including those

instanton number.

Here we are interested in theories with matter fields, but with some residual center

symmetry. This means that fractional instantons can be constructed, but not of the one

of the minimal charge. For the SU(N) (N even) theory with N
f

left-handed fermions  

in the self-adjoint representation the remaining center symmetry is C

N
2

which means that

only even numbers of fluxes are allowed on each 2-torus. With n12 = n34 = 2 units of

fluxes we have a toron with charge 4
N

. This can be combined with any integer number

of instanton charge to construct the minimal possible instanton charge gcd (4,N)
N

and this is
4
N

= 1
`

for N = 4` and 2
N

= 1
2`+1 when N = 4`+ 2. The symmetry is then broken as

U(1)
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N

(3.81)

first by the ABJ anomaly and instantons, and then by the gauging of the 1-form symmetry.

This result agrees with what was found above by use of the C

N
2

gauge fields (B(2)
c

, B
(1)
c

).

More about these issues at the end, see Discussion (Section 7).

4 Adjoint QCD

SU(N) theories with N
f

Weyl fermions � in the adjoint representation have been the object

of intense study, and our comments here will be brief. In this model, the color center 1-

form C

N

symmetry is exact, therefore can be entirely gauged. The system possesses also

a nonanomalous 0-form discrete chiral symmetry,

�
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2NfN k

� , k = 1, 2, . . . , 2N
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N . (4.1)

We introduce a set of gauge fields

• A
�

: �

2NfN
1-form gauge field, to formally describe (4.1);

• B
(2)
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: ZC

N

2-form gauge field.

The Abelian 6D anomaly is

1

24⇡2

Z
tradj
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As

A
�

= dA
(0)
�

, �A
(0)
�

2 2⇡i

2NN
f

(4.3)
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Models:🔵

(i)  

in those theories.2

A key ingredient of these developments is the idea of "gauging a discrete symmetry",
i.e., identifying the field configurations related by the 1-form (or a higher-form) symmetries,
and eliminating the consequent redundancies, effectively modifying the path-integral sum-
mation rule over gauge fields [33, 34]. Since these generalized symmetries are symmetries
of the models considered, even though they act differently from the conventional ones, it is
up to us to decide to "gauge" these symmetries. Anomalies we encounter in doing so, are
indeed obstructions of gauging a symmetry, i.e., a ’t Hooft anomaly by definition. And as
in the usual application of the ’t Hooft anomalies such as the "anomaly matching" between
UV and IR theories, a similar constraint arises in considering the generalized symmetries
together with a conventional ("0-form") symmetry, which has come to be called in recent
literature as a "mixed ’t Hooft anomaly". Another term of "global inconsistency" was also
used to describe a related phenomenon.

In this paper we take a few, simplest chiral gauge theories as exercise grounds, and
ask whether these new theoretical tools can be usefully applied to them, and whether they
provide us with new insights into the infrared dynamics and global symmetry realizations
of these models.3

For clarity of presentation, we focus the whole discussion here on a single class of
models ( ⌘ models [8, 9]). In Sec. 2 we review the symmetry and earlier results on the
possible phases of these theories. In Sec. 3 the symmetry group of the systems is discussed
more carefully, by taking into account its global aspects. Sec. 4 and Sec. 5 contain the
derivation of the anomalies in odd N and even N theories, respectively. In Sec. 6 we
discuss the UV-IR matching constraints of certain 0-form and 1-form mixed anomalies, and
their consequences on the IR dynamics in even N theories. In Sec. 7 the mixed anomalies are
reproduced without using the Stora-Zumino descent procedure adopted in Sec. 6. Summary
of our analysis and Discussion are in Sec. 8. We shall come back to more general classes of
chiral theories in a separate work.

2 The model and the possible phases

The model we consider in this work is an SU(N) gauge theory with Weyl fermions

 {ij} , ⌘Bi , (i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4) , (2.1)

in the direct-sum representation

� (N + 4)
¯

(2.2)

of SU(N). This model was studied in [12, 13], [8, 9].4 This is the simplest of the class of
chiral gauge theories known as Bars-Yankielowicz models [14]. The first coefficient of the

2A careful exposition of these ideas can be found e.g., in [28].
3 In a recent work we discussed mixed anomalies for a class of chiral gauge theories for which a sub-group

of the center of the gauge group does not act on fermions [31].
4A recent application of this class of chiral gauge theories is found in [32].
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derivation of the anomalies in odd N and even N theories, respectively. In Sec. 6 we
discuss the UV-IR matching constraints of certain 0-form and 1-form mixed anomalies, and
their consequences on the IR dynamics in even N theories. In Sec. 7 the mixed anomalies are
reproduced without using the Stora-Zumino descent procedure adopted in Sec. 6. Summary
of our analysis and Discussion are in Sec. 8. We shall come back to more general classes of
chiral theories in a separate work.

2 The model and the possible phases

The model we consider in this work is an SU(N) gauge theory with Weyl fermions

 {ij} , ⌘Bi , (i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4) , (2.1)

in the direct-sum representation

� (N + 4)
¯

(2.2)

of SU(N). This model was studied in [12, 13], [8, 9].4 This is the simplest of the class of
chiral gauge theories known as Bars-Yankielowicz models [14]. The first coefficient of the

2A careful exposition of these ideas can be found e.g., in [28].
3 In a recent work we discussed mixed anomalies for a class of chiral gauge theories for which a sub-group

of the center of the gauge group does not act on fermions [31].
4A recent application of this class of chiral gauge theories is found in [32].
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(ii)  

Bolognesi, KK, Luzio , ’20 

1 Introduction

2 “�⌘” model

This model was also studied by [7, 8], by Poppitz (private communications) and by ourselves
[3, 4]. The matter fermions are 1

�[ij] , ⌘

B j
, B = 1, 2, . . . , (N � 4) , (2.1)

or
¯

+ (N � 4) (2.2)

of SU(N). For N = 5 this reduces to the Georgi-Glashow model. The symmetry of this
system is

SU(N)c ⇥
SU(N � 4)f ⇥ U�⌘(1)

ZN ⇥ ZN�4
, (2.3)

where the anomaly-free U�⌘(1) charge is (for odd N)

� : N � 4 ; ⌘

B j
: �(N � 2) . (2.4)

b0 = 11N � (N � 2)� (N � 4) = 9N + 6 . (2.5)

There is also an anomaly-free discrete symmetry

Z� = ZN�2 ⇢ U (1) , (2.6)

but it can be easily seen that ZN�2 ⇢ U�⌘(1) , for odd N .
The symmetries of the system is summarized in Table 2. The charges of U�⌘(1) corre-

sponds to the odd N case. For even N theory, see later.

fields SU(N) SU(N � 4)⌘ U�⌘(1)

�

¯

N(N�1)
2 · (·) N � 4

⌘ �(N � 2)

B

{CD}
(·) �N

Table 1. Symmetries of the (0, 1) model, for odd N . The charges of the candidate "massless"
baryons (2.7) are also given.

For even N theory, the symmetry is
1
The matter field in the fundamental representation in the present model is denoted here simply as ⌘,

and not as ⌘̃ as in [3, 4]. This should not cause any confusion.
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in repr

* Ordinarily fermions in the fund. irrep of SU(N) would simply breaks the
center symmetry.  Use color-flavor locked          symmetry! 

instanton number.

Here we are interested in theories with matter fields, but with some residual center

symmetry. This means that fractional instantons can be constructed, but not of the one

of the minimal charge. For the SU(N) (N even) theory with N
f

left-handed fermions  

in the self-adjoint representation the remaining center symmetry is C

N
2

which means that

only even numbers of fluxes are allowed on each 2-torus. With n12 = n34 = 2 units of

fluxes we have a toron with charge 4
N

. This can be combined with any integer number

of instanton charge to construct the minimal possible instanton charge gcd (4,N)
N

and this is
4
N

= 1
`

for N = 4` and 2
N

= 1
2`+1 when N = 4`+ 2. The symmetry is then broken as

U(1)
 

�!  

2TRNf
�!  

2TRNf
gcd (4,N)

N

(3.81)

first by the ABJ anomaly and instantons, and then by the gauging of the 1-form symmetry.

This result agrees with what was found above by use of the C

N
2

gauge fields (B(2)
c

, B
(1)
c

).

More about these issues at the end, see Discussion (Section 7).

4 Adjoint QCD

SU(N) theories with N
f

Weyl fermions � in the adjoint representation have been the object

of intense study, and our comments here will be brief. In this model, the color center 1-

form C

N

symmetry is exact, therefore can be entirely gauged. The system possesses also

a nonanomalous 0-form discrete chiral symmetry,

�

2NfN
: �! e

2⇡i
2NfN k

� , k = 1, 2, . . . , 2N
f

N . (4.1)

We introduce a set of gauge fields

• A
�

: �

2NfN
1-form gauge field, to formally describe (4.1);

• B
(2)
c

: ZC

N

2-form gauge field.

The Abelian 6D anomaly is

1

24⇡2

Z
tradj

�
F̃ � B(2)

c

� dA
�

�3

=
2NN

f

8⇡2

Z
tr(F̃ � B(2)

c

)2 ^ dA
�

+ . . .

=
2NN

f

8⇡2

Z
trF̃ 2 ^ dA

�

� 2N2N
f

8⇡2

Z
(B(2)

c

)2 ^ dA
�

. . . . (4.2)

As

A
�

= dA
(0)
�

, �A
(0)
�

2 2⇡i

2NN
f

(4.3)
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 in the fundamental representaiton *  

♦



in those theories.2

A key ingredient of these developments is the idea of "gauging a discrete symmetry",
i.e., identifying the field configurations related by the 1-form (or a higher-form) symmetries,
and eliminating the consequent redundancies, effectively modifying the path-integral sum-
mation rule over gauge fields [33, 34]. Since these generalized symmetries are symmetries
of the models considered, even though they act differently from the conventional ones, it is
up to us to decide to "gauge" these symmetries. Anomalies we encounter in doing so, are
indeed obstructions of gauging a symmetry, i.e., a ’t Hooft anomaly by definition. And as
in the usual application of the ’t Hooft anomalies such as the "anomaly matching" between
UV and IR theories, a similar constraint arises in considering the generalized symmetries
together with a conventional ("0-form") symmetry, which has come to be called in recent
literature as a "mixed ’t Hooft anomaly". Another term of "global inconsistency" was also
used to describe a related phenomenon.

In this paper we take a few, simplest chiral gauge theories as exercise grounds, and
ask whether these new theoretical tools can be usefully applied to them, and whether they
provide us with new insights into the infrared dynamics and global symmetry realizations
of these models.3

For clarity of presentation, we focus the whole discussion here on a single class of
models ( ⌘ models [8, 9]). In Sec. 2 we review the symmetry and earlier results on the
possible phases of these theories. In Sec. 3 the symmetry group of the systems is discussed
more carefully, by taking into account its global aspects. Sec. 4 and Sec. 5 contain the
derivation of the anomalies in odd N and even N theories, respectively. In Sec. 6 we
discuss the UV-IR matching constraints of certain 0-form and 1-form mixed anomalies, and
their consequences on the IR dynamics in even N theories. In Sec. 7 the mixed anomalies are
reproduced without using the Stora-Zumino descent procedure adopted in Sec. 6. Summary
of our analysis and Discussion are in Sec. 8. We shall come back to more general classes of
chiral theories in a separate work.

2 The model and the possible phases

The model we consider in this work is an SU(N) gauge theory with Weyl fermions

 {ij} , ⌘Bi , (i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4) , (2.1)

in the direct-sum representation

� (N + 4)
¯

(2.2)

of SU(N). This model was studied in [12, 13], [8, 9].4 This is the simplest of the class of
chiral gauge theories known as Bars-Yankielowicz models [14]. The first coefficient of the

2A careful exposition of these ideas can be found e.g., in [28].
3 In a recent work we discussed mixed anomalies for a class of chiral gauge theories for which a sub-group

of the center of the gauge group does not act on fermions [31].
4A recent application of this class of chiral gauge theories is found in [32].
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♦ Interesting as the conventional ’t Hooft anomaly matching constraints allow both

(i)  Chirally symmetric confining vacuum:

no condensates, and with massless composite fermions (“baryons”) 

beta function is
b0 = 11N � (N + 2)� (N + 4) = 9N � 6 . (2.3)

The fermion kinetic term is given by

 �µ
�

@ +RS(a)
�

µ
PL +

N+4
X

B=1

⌘B�
µ
�

@ +RF⇤(a)
�

µ
PL⌘B , (2.4)

with an obvious notation. In order to emphasize that this is the chiral gauge theory, we
explicitly write the chiral projector PL = 1��5

2 in the fermion kinetic terms. The symmetry
group is

SU(N)c ⇥ SU(N + 4)⇥ U(1) ⌘ , (2.5)

where U(1) ⌘ is the anomaly-free combination of U(1) and U(1)⌘,

U(1) ⌘ :  ! ei(N+4)↵ , ⌘ ! e�i(N+2)↵⌘ . ↵ 2 . (2.6)

The group (2.5) is actually not the true symmetry group of our system, but its covering
group. It captures correctly the local aspects, e.g., how the group behaves around the
identity element, and thus is sufficient for the consideration of the conventional, perturbative
triangle anomalies associated with it, reviewed below in this section.

Its global structures however contain some redundancies, which must be modded out
appropriately in order to eliminate the double counting. They furthermore depend crucially
on whether N is odd or even. These questions will be studied more carefully in Sec. 3, as
they turn out to be central to the main theme of this work: the determination of the mixed
anomalies and the associated, generalized ’t Hooft anomaly matching conditions.

2.1 Chirally symmetric phase

It was noted earlier [8, 12, 13] that the standard ’t Hooft anomaly matching conditions
associated with the continuous symmetry group U(1) ⌘ ⇥ SU(N + 4) allowed a chirally
symmetric, confining vacuum in the model. Let us indeed assume that no condensates
form, the system confines, and the flavor symmetry is unbroken. The candidate massless
composite fermions ("baryons") are:

B[AB] =  ij⌘Ai ⌘
B
j , A,B = 1, 2, . . . , N + 4 , (2.7)

antisymmetric in A $ B. All the SU(N + 4)⇥U(1) ⌘ anomaly triangles are saturated by
B[AB] as can be seen by inspection of Table 1. 5

2.2 Color-flavor locked Higgs phase

As the theory is very strongly coupled in the infrared (see (2.3)), it is also natural to consider
the possibility that a bifermion condensate

h {ij}⌘Bi i = c⇤3�jB 6= 0 , j, B = 1, 2, . . . N , c ⇠ O(1) (2.8)
5There are discrete unbroken symmetries  and  which will be defined later (3.5), (3.6) which

are already contained in the covering space (2.5). The discrete anomalies  SU(N)2,  SU(N + 4)2,
⌘ SU(N)2 and ⌘ SU(N � 4)2 are also matched as a direct consequence.
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with condensates

fields SU(N)c SU(N + 4) U(1) ⌘

UV  N(N+1)
2 · (·) N + 4

⌘A (N + 4) ·
¯

N · �(N + 2)

IR B[AB] (N+4)(N+3)
2 · (·) �N

Table 1. Chirally symmetric phase of the (1, 0) model. The multiplicity, charges and the representation
are shown for each set of fermions. (·) stands for a singlet representation.

forms. ⇤ is the renormailization-invariant scale dynamically generated by the gauge inter-
actions. The color gauge symmetry is completely (dynamically) broken, leaving however
color-flavor diagonal SU(N)cf symmetry

SU(N)cf ⇥ SU(4)f ⇥ U(1)0 , (2.9)

where U(1)0 is a combination of U(1) ⌘ and the elements of SU(N + 4) generated by
 

�21N
N
2 14

!

. (2.10)

As (2.9) is a subgroup of the original full symmetry group (2.5) it can be quite easily
verified, by making the decomposition of the fields in the direct sum of representations in
the subgroup, that a subset of the same baryons B[AB] saturate all of the triangles associated
with the reduced symmetry group. See Table 2.

fields SU(N)cf SU(4)f U(1)0 (Z2)F

UV  N(N+1)
2 · (·) N + 4 1

⌘A1
¯

�

¯

N2 · (·) �(N + 4) �1

⌘A2 4 ·
¯

N · �N+4
2 �1

IR B[A1B1]

¯

N(N�1)
2 · (·) �(N + 4) �1

B[A1B2] 4 ·
¯

N · �N+4
2 �1

Table 2. Color-flavor locked phase in the (1, 0) model, discussed in Sub. 2.2. A1 or B1 stand for 1, 2, . . . , N ,
A2 or B2 the rest of the flavor indices, N + 1, . . . , N + 4. The fermion parity  ! � , ⌘ ! �⌘ is defined
below, Eq. (3.19).

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the first, sym-

metric phase of Sec. 2.1, and N2+7N
2 massless baryons together with 8N + 1 Nambu-

Goldstone (NG) bosons, in the second. They represent physically distinct phases.6 The
6The complementarity does not work here, as noted in [8], even though the (composite) Higgs scalars

 ⌘ are in the fundamental representation of color.

– 5 –

with  massless baryons  and 8N+1 NG bosons 

beta function is
b0 = 11N � (N + 2)� (N + 4) = 9N � 6 . (2.3)

The fermion kinetic term is given by

 �µ
�

@ +RS(a)
�

µ
PL +

N+4
X

B=1

⌘B�
µ
�

@ +RF⇤(a)
�

µ
PL⌘B , (2.4)

with an obvious notation. In order to emphasize that this is the chiral gauge theory, we
explicitly write the chiral projector PL = 1��5

2 in the fermion kinetic terms. The symmetry
group is

SU(N)c ⇥ SU(N + 4)⇥ U(1) ⌘ , (2.5)

where U(1) ⌘ is the anomaly-free combination of U(1) and U(1)⌘,

U(1) ⌘ :  ! ei(N+4)↵ , ⌘ ! e�i(N+2)↵⌘ . ↵ 2 . (2.6)

The group (2.5) is actually not the true symmetry group of our system, but its covering
group. It captures correctly the local aspects, e.g., how the group behaves around the
identity element, and thus is sufficient for the consideration of the conventional, perturbative
triangle anomalies associated with it, reviewed below in this section.

Its global structures however contain some redundancies, which must be modded out
appropriately in order to eliminate the double counting. They furthermore depend crucially
on whether N is odd or even. These questions will be studied more carefully in Sec. 3, as
they turn out to be central to the main theme of this work: the determination of the mixed
anomalies and the associated, generalized ’t Hooft anomaly matching conditions.

2.1 Chirally symmetric phase

It was noted earlier [8, 12, 13] that the standard ’t Hooft anomaly matching conditions
associated with the continuous symmetry group U(1) ⌘ ⇥ SU(N + 4) allowed a chirally
symmetric, confining vacuum in the model. Let us indeed assume that no condensates
form, the system confines, and the flavor symmetry is unbroken. The candidate massless
composite fermions ("baryons") are:

B[AB] =  ij⌘Ai ⌘
B
j , A,B = 1, 2, . . . , N + 4 , (2.7)

antisymmetric in A $ B. All the SU(N + 4)⇥U(1) ⌘ anomaly triangles are saturated by
B[AB] as can be seen by inspection of Table 1. 5

2.2 Color-flavor locked Higgs phase

As the theory is very strongly coupled in the infrared (see (2.3)), it is also natural to consider
the possibility that a bifermion condensate

h {ij}⌘Bi i = c⇤3�jB 6= 0 , j, B = 1, 2, . . . N , c ⇠ O(1) (2.8)
5There are discrete unbroken symmetries  and  which will be defined later (3.5), (3.6) which

are already contained in the covering space (2.5). The discrete anomalies  SU(N)2,  SU(N + 4)2,
⌘ SU(N)2 and ⌘ SU(N � 4)2 are also matched as a direct consequence.

– 4 –

🔵 GF   =

fields SU(N)c SU(N + 4) U(1) ⌘

UV  N(N+1)
2 · (·) N + 4

⌘A (N + 4) ·
¯

N · �(N + 2)

IR B[AB] (N+4)(N+3)
2 · (·) �N

Table 1. Chirally symmetric phase of the (1, 0) model. The multiplicity, charges and the representation
are shown for each set of fermions. (·) stands for a singlet representation.

forms. ⇤ is the renormailization-invariant scale dynamically generated by the gauge inter-
actions. The color gauge symmetry is completely (dynamically) broken, leaving however
color-flavor diagonal SU(N)cf symmetry

SU(N)cf ⇥ SU(4)f ⇥ U(1)0 , (2.9)

where U(1)0 is a combination of U(1) ⌘ and the elements of SU(N + 4) generated by
 

�21N
N
2 14

!

. (2.10)

As (2.9) is a subgroup of the original full symmetry group (2.5) it can be quite easily
verified, by making the decomposition of the fields in the direct sum of representations in
the subgroup, that a subset of the same baryons B[AB] saturate all of the triangles associated
with the reduced symmetry group. See Table 2.

fields SU(N)cf SU(4)f U(1)0 (Z2)F

UV  N(N+1)
2 · (·) N + 4 1

⌘A1
¯

�

¯

N2 · (·) �(N + 4) �1

⌘A2 4 ·
¯

N · �N+4
2 �1

IR B[A1B1]

¯

N(N�1)
2 · (·) �(N + 4) �1

B[A1B2] 4 ·
¯

N · �N+4
2 �1

Table 2. Color-flavor locked phase in the (1, 0) model, discussed in Sub. 2.2. A1 or B1 stand for 1, 2, . . . , N ,
A2 or B2 the rest of the flavor indices, N + 1, . . . , N + 4. The fermion parity  ! � , ⌘ ! �⌘ is defined
below, Eq. (3.19).

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the first, sym-

metric phase of Sec. 2.1, and N2+7N
2 massless baryons together with 8N + 1 Nambu-

Goldstone (NG) bosons, in the second. They represent physically distinct phases.6 The
6The complementarity does not work here, as noted in [8], even though the (composite) Higgs scalars

 ⌘ are in the fundamental representation of color.

– 5 –

🔵 GF   =

(*) (actually a covering group 

of the true symmetry group)
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Appelquist,Duan, Sannino, ‘00

Bolognesi, KK, Shifman ‘18

Let’s study         models  - SU(N) theory with 

and



(i)  Chirally symmetric confining vacuum

(ii)  Color-flavor locked dynamical Higgs phase

fields SU(N)c SU(N + 4) U(1) ⌘

UV  N(N+1)
2 · (·) N + 4

⌘A (N + 4) ·
¯

N · �(N + 2)

IR B[AB] (N+4)(N+3)
2 · (·) �N

Table 1. Chirally symmetric phase of the (1, 0) model. The multiplicity, charges and the representation
are shown for each set of fermions. (·) stands for a singlet representation.

forms. ⇤ is the renormailization-invariant scale dynamically generated by the gauge inter-
actions. The color gauge symmetry is completely (dynamically) broken, leaving however
color-flavor diagonal SU(N)cf symmetry

SU(N)cf ⇥ SU(4)f ⇥ U(1)0 , (2.9)

where U(1)0 is a combination of U(1) ⌘ and the elements of SU(N + 4) generated by
 

�21N
N
2 14

!

. (2.10)

As (2.9) is a subgroup of the original full symmetry group (2.5) it can be quite easily
verified, by making the decomposition of the fields in the direct sum of representations in
the subgroup, that a subset of the same baryons B[AB] saturate all of the triangles associated
with the reduced symmetry group. See Table 2.

fields SU(N)cf SU(4)f U(1)0 (Z2)F

UV  N(N+1)
2 · (·) N + 4 1

⌘A1
¯

�

¯

N2 · (·) �(N + 4) �1

⌘A2 4 ·
¯

N · �N+4
2 �1

IR B[A1B1]

¯

N(N�1)
2 · (·) �(N + 4) �1

B[A1B2] 4 ·
¯

N · �N+4
2 �1

Table 2. Color-flavor locked phase in the (1, 0) model, discussed in Sub. 2.2. A1 or B1 stand for 1, 2, . . . , N ,
A2 or B2 the rest of the flavor indices, N + 1, . . . , N + 4. The fermion parity  ! � , ⌘ ! �⌘ is defined
below, Eq. (3.19).

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the first, sym-

metric phase of Sec. 2.1, and N2+7N
2 massless baryons together with 8N + 1 Nambu-

Goldstone (NG) bosons, in the second. They represent physically distinct phases.6 The
6The complementarity does not work here, as noted in [8], even though the (composite) Higgs scalars

 ⌘ are in the fundamental representation of color.
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fields SU(N)c SU(N + 4) U(1) ⌘ (Z2)F

 (·) N+4
2 +1

⌘
¯

�N+2
2 �1

BAB (·) �N
2 �1

Table 3. The charges of various fields with respect to the unbroken symmetry groups for even N . BAB

are the possible massless composite fermion fields discussed in Sec. 2.1. The (Z2)F "charge" in the Table
corresponds to the transformation  ! ei⇡ , ⌘ ! e�i⇡⌘.

The division by ZN+4 is understood in a similar manner. The center element e
2⇡i
N+4 2

SU(N+4) of the flavor group can be identified as the element of U(1) ⌘⇥ (Z2)F as follows:

 !  = (�1) ei
N+4

2
2⇡

N+4 =  , ⌘ ! (�1) e�iN+2
2

2⇡
N+4 ⌘ = ei

2⇡
N+4 ⌘ . (3.24)

Again, the odd elements of ZN+4 belong to the disconnected component of U(1) ⌘⇥ (Z2)F
while the even elements belong to the identity component.

The anomaly-free symmetries and charges for various fields even N are summarized in
Table 3.

3.3 Symmetry in the Higgs phase

In the Higgs phase the group (2.9) is actually a covering space of the true symmetry group
which is given for any N by

SU(N)cf ⇥ SU(4)f ⇥ U(1)0 ⇥ (Z2)F

N ⇥ 4
, (3.25)

where U(1)0 has charges given in Table 2. The fermion parity (Z2)F is left unbroken by the
condensate but is not contained in U(1)0 so it must be kept in the numerator. The center
of SU(N)cf overlaps completely with U(1)0 so it must be factoruszed (in fact we may write
it as U(N)cf). The center of SU(4)f also overlaps with U(1)0 ⇥ (Z2)F which explains the
division by 4.

4 Mixed anomalies: Odd N case

In this section we probe the system with a finer tool, i.e., by gauging possible 1-form
center symmetries and studying possible mixed ’t Hooft anomalies, to see if a stronger
constraint emerges. In order to detect the ’t Hooft anomalies, one needs to introduce the
background gauge fields for the global symmetry Gf , and check the violation of associated
gauge invariance. Correspondingly to the symmetry of the system, Eq. (3.8), we thus
introduce

• A: U(1) ⌘ 1-form gauge field,

• Af : SU(N + 4) 1-form gauge field,
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Wish to find out if the generalized ’t Hooft mixed-anomaly-matching 
gives a stronger constraint



♦

Gauge the 1-form  

Gauging N ⇢ SU(N) \ [U ⌘(1)⇥ 2]

(i) The relation between 2 and SU(N)⇥U ⌘(1) ((3.22) and (3.23)) show that 2 is indeed
included in N ⇥ U ⌘(1), where the second factor is a particular discrete subgroup
of U ⌘(1). We saw already that nevertheless 2 is not necessarily non-anomalous for
generic SU(N) gauge configurations. At the same time, these relations show that
the even elements of N ⇥ U ⌘(1) are trivial: they correspond to

 !  , ⌘ ! ⌘

(even elements of 2).

(ii) Stated di↵erently, the symmetry of the even N theory can be written alternatively as

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)

ZN/2 ⇥ Z(N+4)/2 ⇥ 2
.

There is nothing wrong with this, but then the 1-form symmetry one may gauge is

ZN/2 ⇢ SU(N) \ U ⌘(1).

or similarly Z(N+4)/2. You can try to introduce B fields, but nothing can be gained.
B fields have the integral over ⌃2 ( flux ) 2⇡ · 2/N (double of Eq. (5.25)) in this case;
and of course, there is no (Z2)F anomaly to talk about.

(iii) If instead we decide (it is up to us) to ”gauge” the 1-form symmetry

N ⇢ SU(N) \ (U ⌘(1)⇥ (Z2)F ) ,

using the symmetry of the system written as (3.21):

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
,

then one must introduce all gauge fields listed at the beginning of Sec. 5.1, including
the continuous A2 fields for (Z2)F . Bc and Bf fields have fluxes in (5.11), (5.12),
but only the minimum nontrivial fluxes have meaning, n1 = m1 = 1. The said
1-form gauging means that the system must be made invariant under continuous
transformations, (5.5), (5.10). And this includes a continuous (Z2)F (A2) gauge
transformations, see (5.12).

(iv) By the way this is what one does formally in the usual (no B fields) theory to compute
the (Z2)F anomaly. See our check, in Sec. 5.3, the first term in Eq. (5.33).

(v) If you discuss the cocycle condition by using the SU(N) and U ⌘(1) transformations
only, you get only plus sign in (5.26), (5.27), and you are back to the gauging of N/2

- the option (ii) above.

1

♦

the true symmetry group of the system turns out to be:   (N=even)

Gauging N ⇢ SU(N) \ [U ⌘(1)⇥ 2]

(i) The relation between 2 and SU(N)⇥U ⌘(1) ((3.22) and (3.23)) show that 2 is indeed
included in N ⇥ U ⌘(1), where the second factor is a particular discrete subgroup
of U ⌘(1). We saw already that nevertheless 2 is not necessarily non-anomalous for
generic SU(N) gauge configurations. At the same time, these relations show that
the even elements of N ⇥ U ⌘(1) are trivial: they correspond to

 !  , ⌘ ! ⌘

(even elements of 2).

(ii) Stated di↵erently, the symmetry of the even N theory can be written alternatively as

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)

ZN/2 ⇥ Z(N+4)/2 ⇥ 2
.

There is nothing wrong with this, but then the 1-form symmetry one may gauge is

ZN/2 ⇢ SU(N) \ U ⌘(1).

or similarly Z(N+4)/2. You can try to introduce B fields, but nothing can be gained.
B fields have the integral over ⌃2 ( flux ) 2⇡ · 2/N (double of Eq. (5.25)) in this case;
and of course, there is no (Z2)F anomaly to talk about.

(iii) If instead we decide (it is up to us) to ”gauge” the 1-form symmetry

N ⇢ SU(N) \ (U ⌘(1)⇥ (Z2)F ) ,

using the symmetry of the system written as (3.21):

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
,

then one must introduce all gauge fields listed at the beginning of Sec. 5.1, including
the continuous A2 fields for (Z2)F . Bc and Bf fields have fluxes in (5.11), (5.12),
but only the minimum nontrivial fluxes have meaning, n1 = m1 = 1. The said
1-form gauging means that the system must be made invariant under continuous
transformations, (5.5), (5.10). And this includes a continuous (Z2)F (A2) gauge
transformations, see (5.12).

(iv) By the way this is what one does formally in the usual (no B fields) theory to compute
the (Z2)F anomaly. See our check, in Sec. 5.3, the first term in Eq. (5.33).

(v) If you discuss the cocycle condition by using the SU(N) and U ⌘(1) transformations
only, you get only plus sign in (5.26), (5.27), and you are back to the gauging of N/2

- the option (ii) above.

1

(*)cfr.

🔵 Introduce

5 Mixed anomalies: Even N case

We discuss now the even N theories. The calculation of the anomalies, 1-form gauging
and anomaly matching checks go through mostly as in the odd N case discussed above, by
taking into account appropriately the difference in the U(1) ⌘ charges of the matter fields
and in the center symmetries themselves, as well as the presence of an independent discrete
(Z2)F symmetry. However the conclusion turns out to be qualitatively different.

5.1 Calculation of anomalies

To detect the anomalies of global symmetry Gf , Eq. (3.21), we introduce the gauge fields

• A: U(1) ⌘ 1-form gauge field,

• A(1)
2 : (Z2)F 1-form gauge field,

• Af : SU(N + 4) 1-form gauge field,

• B(2)
c : ZN 2-form gauge field,

• B(2)
f : ZN+4 2-form gauge field.

(Z2)F is an ordinary (0-form) discrete symmetry, and we introduced accordingly a 1-form
gauge field

A(1)
2 , �A(1)

2 =
1

2
d �A(0)

2 . (5.1)

The (Z2)F variation in the 4D action is described by,

�A(0)
2 = ±2⇡ , i.e. ,  ! ei⇡ = � , ⌘ ! e�i⇡⌘ = �⌘ . (5.2)

In order to avoid misunderstandings, let us repeat that A(1)
2 is a gauge field formally in-

troduced to describe an ordinary (0-form) (Z2)F symmetry. In this sense it is perfectly
analogous to the U(1) ⌘ gauge field, A.

�

B(2)
c , B(2)

f

�

are instead introduced to "gauge" the
1-form center (ZN and ZN+4) symmetries 9. The procedure was reviewed briefly at the
beginning of Sec. 4, in the case of odd N theories.

For even N theories under consideration here, the construction is similar. We introduce
two pairs of gauge fields

�

B(2)
c , B(1)

c
�

and
�

B(2)
f , B(1)

f

�

, satisfying the constraints 10

NB(2)
c = dB(1)

c ; (N + 4)B(2)
f = dB(1)

f . (5.3)

Under the gauged (1-form) center transformations, these fields transform as

B(2)
c ! B(2)

c + d�c , B(1)
c ! B(1)

c +N�c , (5.4)
9In order to completely dispel the risk of confusion, it might have been a good idea to put suffix such as

in (Z2)
(0)
F , Z(1)

N , or Z(1)
N+4, to show explicitly which types of symmetry we are talking about. We refrained

ourselves from doing so in this work, however, in order to avoid cluttered formulae, and confiding in the
attentiveness of the reader. Another reason is that the symbol ZN , e.g., is used both to indicate the
particular symmetry type and to stand for the cyclic group CN itself.

10See the discussion at the beginning of Sec. 4 for the meaning of these constraints.
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B(2)
c ! B(2)

c + d�c , B(1)
c ! B(1)

c +N�c , (5.4)
9In order to completely dispel the risk of confusion, it might have been a good idea to put suffix such as

in (Z2)
(0)
F , Z(1)

N , or Z(1)
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B(2)
f ! B(2)

f + d�f , B(1)
f ! B(1)

f + (N + 4)�f , (5.5)

which respect the constraints (5.3). Now the whole system must be made invariant under
these transformations, and this requires the gauge fields A, A2, Af , color SU(N) gauge field
a, as well as the fermions, be all coupled appropriately to

�

B(2)
c , B(1)

c
�

and
�

B(2)
f , B(1)

f

�

fields.
To achieve this we first embed the dynamical SU(N) gauge field a into a U(N) gauge

field ea as
ea = a+

1

N
B(1)

c , (5.6)

and the SU(N + 4) flavor gauge field as U(N + 4) gauge field eAf as

eAf = Af +
1

N + 4
B(1)

f . (5.7)

Under the center of SU(N), the symmetry-group element (ei↵, (�1)n, gf) 2 U(1) ⇥ Z2 ⇥
SU(N + 4) is identified as (see Eq. (3.23))

(ei↵, (�1)n, gf) ⇠ (ei(↵�
2⇡
N ), (�1)nei

2⇡
N

N
2 , gf) . (5.8)

This means that U(1) ⌘ gauge field A has charge �1, (Z2)F gauge field A(1)
2 has charge N

2 ,
and U(N + 4) gauge field eAf has charge 0 under the U(1) 1-form gauge transformation �c

for B(2)
c .

Similarly, the division by ZN+4 means that we identify (see Eq. (3.24))

(ei↵, (�1)n, gf) ⇠ (ei(↵�
2⇡

N+4 ), (�1)nei
N+4

2
2⇡

N+4 , gf e
2⇡i
N+4 ) , (5.9)

and this determines the charges under �f .
These considerations determine uniquely the way the 1-form gauge fields transform

under (5.4) and (5.5):

ea ! ea+ �c ,

A ! A� �c � �f ,

A(1)
2 ! A(1)

2 +
N

2
�c +

N + 4

2
�f ,

eAf ! eAf + �f . (5.10)

The crucial ingredient in our analysis now is the nontrivial ’t Hooft fluxes carried by
the ( N and N+4) 2-form gauge fields B(2)

c and B(2)
f ,

1

2⇡

Z

⌃2

B(2)
c =

n1

N
, n1 2 N , (5.11)

1

2⇡

Z

⌃2

B(2)
f =

m1

N + 4
, m1 2 N+4 , (5.12)
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♦

Be more careful about the symmetry: 

a :  SU(N) gauge field



Impose invariance under:

5 Mixed anomalies: Even N case

We discuss now the even N theories. The calculation of the anomalies, 1-form gauging
and anomaly matching checks go through mostly as in the odd N case discussed above, by
taking into account appropriately the difference in the U(1) ⌘ charges of the matter fields
and in the center symmetries themselves, as well as the presence of an independent discrete
(Z2)F symmetry. However the conclusion turns out to be qualitatively different.

5.1 Calculation of anomalies

To detect the anomalies of global symmetry Gf , Eq. (3.21), we introduce the gauge fields

• A: U(1) ⌘ 1-form gauge field,

• A(1)
2 : (Z2)F 1-form gauge field,

• Af : SU(N + 4) 1-form gauge field,

• B(2)
c : ZN 2-form gauge field,

• B(2)
f : ZN+4 2-form gauge field.

(Z2)F is an ordinary (0-form) discrete symmetry, and we introduced accordingly a 1-form
gauge field

A(1)
2 , �A(1)

2 =
1

2
d �A(0)

2 . (5.1)

The (Z2)F variation in the 4D action is described by,

�A(0)
2 = ±2⇡ , i.e. ,  ! ei⇡ = � , ⌘ ! e�i⇡⌘ = �⌘ . (5.2)

In order to avoid misunderstandings, let us repeat that A(1)
2 is a gauge field formally in-

troduced to describe an ordinary (0-form) (Z2)F symmetry. In this sense it is perfectly
analogous to the U(1) ⌘ gauge field, A.

�

B(2)
c , B(2)

f

�

are instead introduced to "gauge" the
1-form center (ZN and ZN+4) symmetries 9. The procedure was reviewed briefly at the
beginning of Sec. 4, in the case of odd N theories.

For even N theories under consideration here, the construction is similar. We introduce
two pairs of gauge fields

�

B(2)
c , B(1)

c
�

and
�

B(2)
f , B(1)

f

�

, satisfying the constraints 10

NB(2)
c = dB(1)

c ; (N + 4)B(2)
f = dB(1)

f . (5.3)

Under the gauged (1-form) center transformations, these fields transform as

B(2)
c ! B(2)

c + d�c , B(1)
c ! B(1)

c +N�c , (5.4)
9In order to completely dispel the risk of confusion, it might have been a good idea to put suffix such as

in (Z2)
(0)
F , Z(1)

N , or Z(1)
N+4, to show explicitly which types of symmetry we are talking about. We refrained

ourselves from doing so in this work, however, in order to avoid cluttered formulae, and confiding in the
attentiveness of the reader. Another reason is that the symbol ZN , e.g., is used both to indicate the
particular symmetry type and to stand for the cyclic group CN itself.

10See the discussion at the beginning of Sec. 4 for the meaning of these constraints.
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Fermion kinetic terms

in nontrivial closed two-dimensionl spaces (such as a torus). On topologically nontrivial
four dimensional spacetime of Euclidean signature ⌃4 compactified on double torus (à la ’t
Hooft), one has then

1

8⇡2

Z

⌃4

(B(2)
c )2 =

n

N2
,

1

8⇡2

Z

⌃4

(B(2)
f )2 =

m

(N + 4)2
, (5.13)

where n 2 N and m 2 N+4, and an extra factor 2 with respect to (5.11) is due to the
two possible ways the two B(2)

c fields are distributed on the two torus (similarly for B(2)
f ).

The fermion kinetic term with the background gauge field is obtained by the minimal
coupling procedure as

 �µ
✓

@ +RS(ea) +
N + 4

2
A+A2

◆

µ

PL 

+ ⌘�µ
✓

@ +RF⇤(ea) + eAf �
N + 2

2
A�A2

◆

µ

PL⌘ . (5.14)

Here, A2 represents the coupling to the fermion parity (�1)F , so its coefficient is meaningful
only modulo 2, and we fix the convention here.11 With this assignment of charges, each
covariant derivative turns out to be invariant under 1-form gauge transformations without
introducing extra terms. This is of course a direct reflection of the equivalence, (3.22) and
(3.23), or (5.8), (5.9), i.e., of the requirement that the N ⇢ SU(N) transformation is
canceled by U(1) ⌘ ⇥ 2 (and similarly for the N+4 symmetry).

We compute the anomalies again by applying the Stora-Zumino descent procedure
starting with a 6D anomaly functional. The two-index symmetric fermion  feels the
gauge field strength

RS
�

F (ea)
�

+
N + 4

2
dA+ dA2 = RS

�

F (ã)�B(2)
c

�

+
N + 4

2

h

dA+B(2)
c +B(2)

f

i

+



dA(1)
2 � N

2
B(2)

c � N + 4

2
B(2)

f

�

, (5.15)

where appropriate 2-form gauge fields have been introduced so that each term is now 1-form
gauge invariant. Similarly, the anti-fundamental fermion ⌘ feels the gauge field strength

RF⇤
�

F (ea)
�

+ F ( eAf)�
N + 2

2
dA� dA2

= �[F (ea)�B(2)
c ] + [F ( eAf)�B(2)

f ]� N + 2

2

h

dA+B(2)
c +B(2)

f

i

�


dA(1)
2 � N

2
B(2)

c � N + 4

2
B(2)

f

�

. (5.16)

The low energy "baryons" gives

RA
�

F ( eAf)
�

� N

2
dA� dA2

= RA[F ( eAf)�B(2)
f ]� N

2

h

dA+B(2)
c +B(2)

f

i

�


dA(1)
2 � N

2
B(2)

c � N + 4

2
B(2)

f

�

.

(5.17)
11If the 2 charges were assigned as (+1,+1), rather than (+1,�1), as in Eq. (5.14), some coefficients in

Eq. (5.20) would change, but the final results would not change.
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Invariant tensors felt by the fermions 

…….

Stora-Zumino 



Calculation of mixed anomalies ;  generalized ’t Hooft anomaly matching criteria

Results:

6.1 Mixed (Z2)F � [ZN ]2 anomaly

Collecting all terms of the form
N2

Z

(B(2)
c )2A(1)

2 (6.5)

in the 5D WZW action, one finds at UV,

S(5)
UV = 1 · 1

8⇡2

Z

⌃5

N2(B(2)
c )2 ·A(1)

2 . (6.6)

The coefficient in front of the above expression (6.6) is the result of the sum from various
 and ⌘ contributions in (5.18) and (5.19):

�N + 2

N
+

(N + 1)(N + 4)2

8N
� (N + 4)(N + 1)

4
+

N(N + 1)

8

+
N + 4

N
� (N + 4)(N + 2)2

4N
+

(N + 2)(N + 4)

2
� N(N + 4)

4
= 1 . (6.7)

The result (6.6) leads to the 4D mixed (Z2)F � [ZN ]2 anomaly in the UV,

�S(4)
UV = ±i⇡ , �A(1)

2 = d
1

2
�A(0)

2 , �A(0)
2 = ±2⇡ . (6.8)

In other words, the partition function changes sign under the 2 transformation,  ! � ,
⌘ ! �⌘, in appropriate background B(2)

c fields 19

1

8⇡2

Z

⌃4

N2(B(2)
c )2 = . (6.9)

On the other hand, in the infrared, assuming the chirally symmetric scenario, Sec. 2.1,
the "massless baryons" (5.21) lead to no anomalies of this type:

0 ·N2(B(2)
c )2A(1)

2 = 0 , (6.10)

due to the cancellation

� (N + 4)(N + 3)

8
� (N + 4)(N + 3)

8
+

(N + 3)(N + 4)

4
= 0 , (6.11)

among the 4th, 6th and 7th terms of (5.21). Actually the absence of the mixed A(1)
2 �B(2)

c

terms can be seen directly from the first line of (5.21). (See footnote 13.)
The conclusion is that the mixed (Z2)F � [ZN ]2 anomaly is present in the UV but

absent in the IR. They do not match.

6.2 Mixed (Z2)F � [ZN+4]2 anomaly

We now study the terms
(N + 4)2

Z

(B(2)
f )2A(1)

2 (6.12)

19Equivalently, in the presence of appropriate fractional ’t Hooft fluxes.
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🔵

♦

♦ N.B.   without gauging the 1-form symmetry  

for the twist indices. As already noted in Sec. 4, these indices nij (or mij) correspond
exactly to the second Stiefel-Whitney class of SU(N)

N
(or SU(N+4)

N+4
) connections. In other

words, the condition (5.28) translates into the B(2)
c and B(2)

f fluxes satisfying Eq. (5.25).

5.3 Anomaly matching without the gauging of the 1-form center symmetries

As another little preparation for our calculations, let us first check that our gauge fields
and their variations are properly normalized, by considering the anomalies in the ordinary
case, i.e., where the 1-form N and N+4 symmetries are not gauged. In other words, we
set

B(2)
c = B(1)

c = B(2)
f = B(1)

f = 0 . (5.29)

The first three terms (the triangles involving U(1) ⌘ and SU(N + 4)) of Eq. (5.21) match
exactly those in the UV anomaly, Eq. (5.20), whether or not

�

B(2)
c , B(2)

f

�

fields are present.
The second-from-the-last terms in Eq. (5.20) and in Eq. (5.21) describe the nontrivial
[( 2)F ]2 � U(1) ⌘ anomaly, which are identical in UV and IR, again, whether or not the
1-form gauging of N and N+4 is done.

To compute the ( 2)F anomaly in the UV, one collects the terms
Z

⌃6

(. . .) dA(1)
2 , (5.30)

and integrate to get the boundary 5D effective WZW action
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2 . (5.31)

The ( 2)F transformations of the fermions are formally expressed as the transformation of
the ( 2)F "gauge field" A(1)
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yielding the anomaly-inflow in 4D
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The first line is the standard chiral anomaly expression associated with the field transfor-
mation

 ! � , ⌘ ! �⌘ , �A(0)
2 = ±2⇡ (5.34)

due to SU(N) and SU(N + 4) gauge fields. They are actually both trivial (no anomalies)
due to the integer instanton numbers:
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would have found:  No Z2 anomaly!

6.1 Mixed (Z2)F � [ZN ]2 anomaly

Collecting all terms of the form
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in the 5D WZW action, one finds at UV,

S(5)
UV = 1 · 1

8⇡2

Z

⌃5

N2(B(2)
c )2 ·A(1)

2 . (6.6)

The coefficient in front of the above expression (6.6) is the result of the sum from various
 and ⌘ contributions in (5.18) and (5.19):
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The result (6.6) leads to the 4D mixed (Z2)F � [ZN ]2 anomaly in the UV,
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In other words, the partition function changes sign under the 2 transformation,  ! � ,
⌘ ! �⌘, in appropriate background B(2)
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On the other hand, in the infrared, assuming the chirally symmetric scenario, Sec. 2.1,
the "massless baryons" (5.21) lead to no anomalies of this type:
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due to the cancellation
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among the 4th, 6th and 7th terms of (5.21). Actually the absence of the mixed A(1)
2 �B(2)

c

terms can be seen directly from the first line of (5.21). (See footnote 13.)
The conclusion is that the mixed (Z2)F � [ZN ]2 anomaly is present in the UV but

absent in the IR. They do not match.

6.2 Mixed (Z2)F � [ZN+4]2 anomaly

We now study the terms
(N + 4)2

Z

(B(2)
f )2A(1)

2 (6.12)

19Equivalently, in the presence of appropriate fractional ’t Hooft fluxes.

– 24 –

No Z2 anomaly

♦ Mixed 6.1 Mixed (Z2)F � [ZN ]2 anomaly

Collecting all terms of the form
N2

Z

(B(2)
c )2A(1)

2 (6.5)

in the 5D WZW action, one finds at UV,

S(5)
UV = 1 · 1

8⇡2

Z

⌃5

N2(B(2)
c )2 ·A(1)

2 . (6.6)

The coefficient in front of the above expression (6.6) is the result of the sum from various
 and ⌘ contributions in (5.18) and (5.19):

�N + 2

N
+

(N + 1)(N + 4)2

8N
� (N + 4)(N + 1)

4
+

N(N + 1)

8

+
N + 4

N
� (N + 4)(N + 2)2

4N
+

(N + 2)(N + 4)

2
� N(N + 4)

4
= 1 . (6.7)

The result (6.6) leads to the 4D mixed (Z2)F � [ZN ]2 anomaly in the UV,

�S(4)
UV = ±i⇡ , �A(1)

2 = d
1

2
�A(0)

2 , �A(0)
2 = ±2⇡ . (6.8)

In other words, the partition function changes sign under the 2 transformation,  ! � ,
⌘ ! �⌘, in appropriate background B(2)

c fields 19

1

8⇡2

Z

⌃4

N2(B(2)
c )2 = . (6.9)

On the other hand, in the infrared, assuming the chirally symmetric scenario, Sec. 2.1,
the "massless baryons" (5.21) lead to no anomalies of this type:

0 ·N2(B(2)
c )2A(1)

2 = 0 , (6.10)

due to the cancellation

� (N + 4)(N + 3)

8
� (N + 4)(N + 3)

8
+

(N + 3)(N + 4)

4
= 0 , (6.11)

among the 4th, 6th and 7th terms of (5.21). Actually the absence of the mixed A(1)
2 �B(2)

c

terms can be seen directly from the first line of (5.21). (See footnote 13.)
The conclusion is that the mixed (Z2)F � [ZN ]2 anomaly is present in the UV but

absent in the IR. They do not match.

6.2 Mixed (Z2)F � [ZN+4]2 anomaly

We now study the terms
(N + 4)2

Z

(B(2)
f )2A(1)

2 (6.12)

19Equivalently, in the presence of appropriate fractional ’t Hooft fluxes.

– 24 –

’t Hooft anomaly does not UV-IR match 

♦  Assuming the chirally

symmetric vacuum 

         The chirally symmetric vacuum is inconsistent

Z2 anomaly !



🔵
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On the other hand, in the infrared, assuming the chirally symmetric scenario, Sec. 2.1,
the "massless baryons" (5.21) lead to no anomalies of this type:
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among the 4th, 6th and 7th terms of (5.21). Actually the absence of the mixed A(1)
2 �B(2)

c

terms can be seen directly from the first line of (5.21). (See footnote 13.)
The conclusion is that the mixed (Z2)F � [ZN ]2 anomaly is present in the UV but

absent in the IR. They do not match.
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We now study the terms
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No Z2 anomaly

term present with coefficient

in the 5D action. The  and ⌘ both give vanishing contribution to the coefficient:
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On the other hand, the massless baryons in the IR gives:
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Therefore, the result here is opposite: the mixed (Z2)F � [ZN+4]2 anomaly is absent in the
UV but present in the IR! However the conclusion is the same: they do not satisfy the ’t
Hooft anomaly matching requirement.
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Thus there are no mixed ( 2)F � N � N+4 anomaly in the UV.
In the IR, the baryons produces the terms of this type with the coefficient:
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(Again this result could have been read off from the first line of (5.21).) Therefore there are
no anomalies of this type in the IR either. Therefore no question of ’t Hooft consistency
condition arises from the consideration of the mixed ( 2)F � N � N+4 anomalies.
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🔵  matches in UV and IR

which is an even integer. This means that no mixed ( 2)F � N � U(1) ⌘ anomaly is
present in the UV. We know already that there are no terms mixing A(1)

2 and B(2)
c in the

infrared: there are no mixed anomalies of this type in the infrared either.

6.5 Mixed ( 2)F � N+4 � U(1) ⌘ anomaly

One must collect the terms of the form,
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2 . (6.21)

One finds the coefficients, in the UV,
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the sum of which is an even integer: there are no anomaly of this type in the UV. In the
IR, the massless baryons give

�
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2
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which is again an even integer. There are no anomaly of this type in the IR either.

6.6 Physics implications

Of all types of mixed anomalies involving the fermion parity ( 2)F considered above, we
thus find that (Z2)F � [ZN ]2 and (Z2)F � [ZN+4]2 anomalies provide us with the most
interesting information. Namely the anomaly of the first type is present in the UV but
absent in the IR; the situation is opposite for the second type of anomaly: it is absent in
the UV but present in the IR. All other types of mixed anomalies as well as conventional
anomalies are found to match in the UV and IR, assuming the chirally symmetric vacuum
of Sec. 2.1.

We are thus led to conclude that the chirally symmetric vacuum of Sec. 2.1 cannot be
the correct vacuum of the  ⌘ theory with even N .

No problem arises if the system is in the dynamical Higgs phase, discussed in Sec. 2.2.
One might however wonder how the failure of the matching of these mixed anomalies in
the UV and IR might be accounted for by the bifermion condensate, h ⌘i, in view of the
fact that the fermion parity (2⇡ space rotation) does not act on it. The answer is that the
failure of the ’t Hooft matching condition in this case means that the 1-form gauging of the
[U(1) ⌘⇥ ( 2)F �SU(N)]-locked ZN , and the [U(1) ⌘⇥ ( 2)F �SU(N +4)]-locked ZN+4,
center symmetries is not allowed. The condensates h ⌘i indeed breaks spontaneously both
of the global 0-form U(1) ⌘ and the global 1-form ZN color center (or the flavor ZN+4

center) symmetry, the infrared system being in a dynamically induced Higgs phase. Still, a
little more careful argument is necessary, before jumping to the conclusion that everything
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On the other hand, in the infrared, assuming the chirally symmetric scenario, Sec. 2.1,
the "massless baryons" (5.21) lead to no anomalies of this type:
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terms can be seen directly from the first line of (5.21). (See footnote 13.)
The conclusion is that the mixed (Z2)F � [ZN ]2 anomaly is present in the UV but

absent in the IR. They do not match.

6.2 Mixed (Z2)F � [ZN+4]2 anomaly

We now study the terms
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19Equivalently, in the presence of appropriate fractional ’t Hooft fluxes.
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found above in the UV theory (absent in the IR):

the mixed ’t Hooft anomaly does not match in the UV and IR,  in the chirally

symmetric confining vacuum:  it cannot be the correct vacuum of the theory.

♦ No difficulties in the dynamical Higgs phase

beta function is
b0 = 11N � (N + 2)� (N + 4) = 9N � 6 . (2.3)

The fermion kinetic term is given by

 �µ
�

@ +RS(a)
�

µ
PL +

N+4
X

B=1

⌘B�
µ
�

@ +RF⇤(a)
�

µ
PL⌘B , (2.4)

with an obvious notation. In order to emphasize that this is the chiral gauge theory, we
explicitly write the chiral projector PL = 1��5

2 in the fermion kinetic terms. The symmetry
group is

SU(N)c ⇥ SU(N + 4)⇥ U(1) ⌘ , (2.5)

where U(1) ⌘ is the anomaly-free combination of U(1) and U(1)⌘,

U(1) ⌘ :  ! ei(N+4)↵ , ⌘ ! e�i(N+2)↵⌘ . ↵ 2 . (2.6)

The group (2.5) is actually not the true symmetry group of our system, but its covering
group. It captures correctly the local aspects, e.g., how the group behaves around the
identity element, and thus is sufficient for the consideration of the conventional, perturbative
triangle anomalies associated with it, reviewed below in this section.

Its global structures however contain some redundancies, which must be modded out
appropriately in order to eliminate the double counting. They furthermore depend crucially
on whether N is odd or even. These questions will be studied more carefully in Sec. 3, as
they turn out to be central to the main theme of this work: the determination of the mixed
anomalies and the associated, generalized ’t Hooft anomaly matching conditions.

2.1 Chirally symmetric phase

It was noted earlier [8, 12, 13] that the standard ’t Hooft anomaly matching conditions
associated with the continuous symmetry group U(1) ⌘ ⇥ SU(N + 4) allowed a chirally
symmetric, confining vacuum in the model. Let us indeed assume that no condensates
form, the system confines, and the flavor symmetry is unbroken. The candidate massless
composite fermions ("baryons") are:

B[AB] =  ij⌘Ai ⌘
B
j , A,B = 1, 2, . . . , N + 4 , (2.7)

antisymmetric in A $ B. All the SU(N + 4)⇥U(1) ⌘ anomaly triangles are saturated by
B[AB] as can be seen by inspection of Table 1. 5

2.2 Color-flavor locked Higgs phase

As the theory is very strongly coupled in the infrared (see (2.3)), it is also natural to consider
the possibility that a bifermion condensate

h {ij}⌘Bi i = c⇤3�jB 6= 0 , j, B = 1, 2, . . . N , c ⇠ O(1) (2.8)
5There are discrete unbroken symmetries  and  which will be defined later (3.5), (3.6) which

are already contained in the covering space (2.5). The discrete anomalies  SU(N)2,  SU(N + 4)2,
⌘ SU(N)2 and ⌘ SU(N � 4)2 are also matched as a direct consequence.
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more likely to be the correct vacuum.

♦ Several conceptually new extensions in this analysis 

🔵  Gauge the color-flavor locked

🔵

Gauging N = [ N ⇢ SU(N)] \ [U ⌘(1)⇥ 2]

(i) The relation between 2 and SU(N)⇥U ⌘(1) ((3.22) and (3.23)) show that 2 is indeed
included in N ⇥ U ⌘(1), where the second factor is a particular discrete subgroup
of U ⌘(1). We saw already that nevertheless 2 is not necessarily non-anomalous for
generic SU(N) gauge configurations. At the same time, these relations show that
the even elements of N ⇥ U ⌘(1) are trivial: they correspond to

 !  , ⌘ ! ⌘

(even elements of 2).

(ii) Stated di↵erently, the symmetry of the even N theory can be written alternatively as

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)

ZN/2 ⇥ Z(N+4)/2 ⇥ 2
.

There is nothing wrong with this, but then the 1-form symmetry one may gauge is

ZN/2 ⇢ SU(N) \ U ⌘(1).

or similarly Z(N+4)/2. You can try to introduce B fields, but nothing can be gained.
B fields have the integral over ⌃2 ( flux ) 2⇡ · 2/N (double of Eq. (5.25)) in this case;
and of course, there is no (Z2)F anomaly to talk about.

(iii) If instead we decide (it is up to us) to ”gauge” the 1-form symmetry

N ⇢ SU(N) \ (U ⌘(1)⇥ (Z2)F ) ,

using the symmetry of the system written as (3.21):

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
,

then one must introduce all gauge fields listed at the beginning of Sec. 5.1, including
the continuous A2 fields for (Z2)F . Bc and Bf fields have fluxes in (5.11), (5.12),
but only the minimum nontrivial fluxes have meaning, n1 = m1 = 1. The said
1-form gauging means that the system must be made invariant under continuous
transformations, (5.5), (5.10). And this includes a continuous (Z2)F (A2) gauge
transformations, see (5.12).

(iv) By the way this is what one does formally in the usual (no B fields) theory to compute
the (Z2)F anomaly. See our check, in Sec. 5.3, the first term in Eq. (5.33).

(v) If you discuss the cocycle condition by using the SU(N) and U ⌘(1) transformations
only, you get only plus sign in (5.26), (5.27), and you are back to the gauging of N/2

- the option (ii) above.

1
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generic SU(N) gauge configurations. At the same time, these relations show that
the even elements of N ⇥ U ⌘(1) are trivial: they correspond to

 !  , ⌘ ! ⌘

(even elements of 2).

(ii) Stated di↵erently, the symmetry of the even N theory can be written alternatively as

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)

ZN/2 ⇥ Z(N+4)/2 ⇥ 2
.

There is nothing wrong with this, but then the 1-form symmetry one may gauge is

ZN/2 ⇢ SU(N) \ U ⌘(1).

or similarly Z(N+4)/2. You can try to introduce B fields, but nothing can be gained.
B fields have the integral over ⌃2 ( flux ) 2⇡ · 2/N (double of Eq. (5.25)) in this case;
and of course, there is no (Z2)F anomaly to talk about.

(iii) If instead we decide (it is up to us) to ”gauge” the 1-form symmetry

N ⇢ SU(N) \ (U ⌘(1)⇥ (Z2)F ) ,

using the symmetry of the system written as (3.21):

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
,

then one must introduce all gauge fields listed at the beginning of Sec. 5.1, including
the continuous A2 fields for (Z2)F . Bc and Bf fields have fluxes in (5.11), (5.12),
but only the minimum nontrivial fluxes have meaning, n1 = m1 = 1. The said
1-form gauging means that the system must be made invariant under continuous
transformations, (5.5), (5.10). And this includes a continuous (Z2)F (A2) gauge
transformations, see (5.12).

(iv) By the way this is what one does formally in the usual (no B fields) theory to compute
the (Z2)F anomaly. See our check, in Sec. 5.3, the first term in Eq. (5.33).

(v) If you discuss the cocycle condition by using the SU(N) and U ⌘(1) transformations
only, you get only plus sign in (5.26), (5.27), and you are back to the gauging of N/2

- the option (ii) above.
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Mixed anomaly involving 

Gauging N = [ N ⇢ SU(N)] \ [U ⌘(1)⇥ 2]

N = [ N ⇢ SU(N)] \ [UV (1)]

(i) The relation between 2 and SU(N)⇥U ⌘(1) ((3.22) and (3.23)) show that 2 is indeed
included in N ⇥ U ⌘(1), where the second factor is a particular discrete subgroup
of U ⌘(1). We saw already that nevertheless 2 is not necessarily non-anomalous for
generic SU(N) gauge configurations. At the same time, these relations show that
the even elements of N ⇥ U ⌘(1) are trivial: they correspond to

 !  , ⌘ ! ⌘

(even elements of 2).

(ii) Stated di↵erently, the symmetry of the even N theory can be written alternatively as

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)

ZN/2 ⇥ Z(N+4)/2 ⇥ 2
.

There is nothing wrong with this, but then the 1-form symmetry one may gauge is

ZN/2 ⇢ SU(N) \ U ⌘(1).

or similarly Z(N+4)/2. You can try to introduce B fields, but nothing can be gained.
B fields have the integral over ⌃2 ( flux ) 2⇡ · 2/N (double of Eq. (5.25)) in this case;
and of course, there is no (Z2)F anomaly to talk about.

(iii) If instead we decide (it is up to us) to ”gauge” the 1-form symmetry

N ⇢ SU(N) \ (U ⌘(1)⇥ (Z2)F ) ,

using the symmetry of the system written as (3.21):

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
,

then one must introduce all gauge fields listed at the beginning of Sec. 5.1, including
the continuous A2 fields for (Z2)F . Bc and Bf fields have fluxes in (5.11), (5.12),
but only the minimum nontrivial fluxes have meaning, n1 = m1 = 1. The said
1-form gauging means that the system must be made invariant under continuous
transformations, (5.5), (5.10). And this includes a continuous (Z2)F (A2) gauge
transformations, see (5.12).

(iv) By the way this is what one does formally in the usual (no B fields) theory to compute
the (Z2)F anomaly. See our check, in Sec. 5.3, the first term in Eq. (5.33).

1

🔵

Gauging N = [ N ⇢ SU(N)] \ [U ⌘(1)⇥ 2]

N = [ N ⇢ SU(N)] \ [UV (1)]

(i) The relation between 2 and SU(N)⇥U ⌘(1) ((3.22) and (3.23)) show that 2 is indeed
included in N ⇥ U ⌘(1), where the second factor is a particular discrete subgroup
of U ⌘(1). We saw already that nevertheless 2 is not necessarily non-anomalous for
generic SU(N) gauge configurations. At the same time, these relations show that
the even elements of N ⇥ U ⌘(1) are trivial: they correspond to

 !  , ⌘ ! ⌘

 ! � , ⌘ ! �⌘

(even elements of 2).

(ii) Stated di↵erently, the symmetry of the even N theory can be written alternatively as

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)

ZN/2 ⇥ Z(N+4)/2 ⇥ 2
.

There is nothing wrong with this, but then the 1-form symmetry one may gauge is

ZN/2 ⇢ SU(N) \ U ⌘(1).

or similarly Z(N+4)/2. You can try to introduce B fields, but nothing can be gained.
B fields have the integral over ⌃2 ( flux ) 2⇡ · 2/N (double of Eq. (5.25)) in this case;
and of course, there is no (Z2)F anomaly to talk about.

(iii) If instead we decide (it is up to us) to ”gauge” the 1-form symmetry

N ⇢ SU(N) \ (U ⌘(1)⇥ (Z2)F ) ,

using the symmetry of the system written as (3.21):

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
,

then one must introduce all gauge fields listed at the beginning of Sec. 5.1, including
the continuous A2 fields for (Z2)F . Bc and Bf fields have fluxes in (5.11), (5.12),
but only the minimum nontrivial fluxes have meaning, n1 = m1 = 1. The said
1-form gauging means that the system must be made invariant under continuous
transformations, (5.5), (5.10). And this includes a continuous (Z2)F (A2) gauge
transformations, see (5.12).

1

Space rotation of 360 degrees!

Roles of 

It might be of interest to recall a subtle aspect in the descent procedure, noted after
Eq. (5.16). In a 4D calculation described here, it is manifest that we are modifying our
theory, in going from the original SU(N) ⇥ SU(N + 4) gauge theory to SU(N)

N
⇥ SU(N+4)

N+4

theory.

8 Summary and discussion

To summarize, in this note we have examined the symmetries of a simple chiral gauge theory,
SU(N)  ⌘ model, by use of the recently found extension of the ’t Hooft anomaly matching
constraints, to include the mixed anomalies involving some higher-form symmetries (in our
case, some 1-form center symmetries). A particular interest in this model lies in the fact that
the conventional ’t Hooft anomaly matching constraints allow a chirally symmetric confining
vacuum, with no condensates breaking the U(1) ⌘ ⇥ SU(N + 4) flavor symmetries, and
with a set of massless baryonlike composite fermions saturating all the anomaly triangles.
Another possible type of vacuum, compatible with the anomaly matching conditions, is
in a dynamical Higgs phase, with a bifermion condensates breaking color completely, but
leaving some residual flavor symmetry. The standard anomaly matching constraints do not
tell apart the two possible dynamical possibilities, which represent two distinct phases of
the theory.

The result of our investigation is that, a deeper level of consistency requirement, taking
into account also certain possible mixed (0-form�1-form) anomalies, allows us, for even N

theory at least, to exclude the first, chirally symmetric type of vacua. One is led inevitably
to the conclusion that the system is likely to be in a dynamical Higgs phase.

More concretely, among all possible mixed anomalies involving the ( 2)F symmetry of
the system, which corresponds actually to 2⇡ space rotation, the anomalies of the types
(Z2)F � [ZN ]2 and (Z2)F � [ZN+4]2 are present, and do not match in the UV and in the
IR, if the chirally symmetric vacuum is assumed.

Our extension of the idea of gauging 1-form center symmetries such as N ⇢ SU(N)

and of finding possible associated mixed anomalies, as compared to the existent literature
[22]-[34], involves a few new concepts. Thus it may be useful to summarize them. The
first concerns the fact that the presence of fermions in the fundamental representation of
the color SU(N) (or of the flavor SU(N + 4)) group, requires us to work with color-flavor
locked center symmetries, see Eq. (3.23), Eq. (3.24). This involves the centers of the SU(N)

or SU(N + 4) locked with some subgroups of the anomaly-free U(1) ⌘. A similar idea has
been studied and tested in several papers already, see [26, 27, 30].

The second nontrivial conceptual extension here involves the discrete ( 2)F symmetry
for even N theory. In this case the center symmetry of interest is the diagonal combination
of N ⇢ SU(N) and N ⇢ U(1) ⌘ ⇥ ( 2)F . Similarly for N+4. This means that both
U(1) ⌘ and ( 2)F gauge fields transform nontrivially under the (gauged) center symmetries,
see Eqs. (5.4)-(5.10).

From the formal point of view, therefore, the position of U(1) ⌘ and ( 2)F symmetries
(hence of the associated background gauge fields) is therefore similar. Even though these are
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symmetries and their external gauge fields are formally similar:

   transform nontrivially under the 1-form gauge transformation (&)

Both affected by the 2-form gauge fields



♦ Important differences with anomalies involving only continuous symmetries: 

All triangles with are matched by

both 0-form symmetries they carry charges under the gauged center N or N+4 symmetry.
The anomalies involving U(1) ⌘ and ( 2)F are both modified nontrivially by the presence
of the 2-form gauge fields,

�

B(2)
c , B(2)

f

�

.
There is an important difference, however. In the case of the continuous SU(N + 4)⇥

U(1) ⌘ symmetries, the anomaly triangles were all matched in the UV and IR before the
introduction of

�

B(2)
c , B(2)

f

�

. For instance, the [U(1) ⌘]3 anomaly takes the simple form in
the 6D action, C (dA)3. The anomaly coefficients satisfy, in the chirally symmetric vacuum
of Sec. 2.1, the matching condition,

CUV = CIR . (8.1)

Now the introduction of the 2-form gauge fields
�

B(2)
c , B(2)

f

�

modifies all the fields, e.g.,

dA ! dA+B(2)
c +B(2)

f , dA(1)
2 ! dA(1)

2 � N

2
B(2)

c � N + 4

2
B(2)

f , (8.2)

etc., but clearly the matching condition (8.1) for the conventional U ⌘(1)3 anomaly is
sufficient to guarantee automatically the matching of the anomaly

C (dA+B(2)
c +B(2)

f )3 , (8.3)

in the modified theory. The same applies to all triangle anomalies involving the continuous
SU(N + 4)⇥ U(1) ⌘ symmetries.

It is a different story for the anomalies involving the discrete symmetry ( 2)F . Before
the introduction of

�

B(2)
c , B(2)

f

�

, ( 2)F was a nonanomalous symmetry of the system. But
this was so due to the integer instanton numbers, not because of an algebraic cancellation
between the contributions from different fermions, as for U ⌘(1). Also, the ( 2)F anomaly
"matching" was not due to the equality of the coefficients as in (8.1), but only due to
an equality modulo 2 of the coefficients, and under the assumption of integer instanton
numbers

1

8⇡2

Z

⌃4

F 2 2 . (8.4)

This means that the introduction of the 2-form gauge fields (which can introduce nontrivial
’t Hooft fluxes in various torus, hence fractional instanton numbers) may make it anomalous,
and as a consequence may invalidate the discrete anomaly matching. Our calculation shows
that it indeed does.

The result found here is somewhat reminiscent of the fate of the time reversal (or CP)
symmetry in the infrared, in pure SU(N) YM theory with ✓ = ⇡ [23]. Note that before
introducing the N 1-form gauging, time reversal invariance at ✓ = ⇡ holds because of the
integer instanton numbers, just as the fermion parity symmetry ( 2)F of our system. From
this prospect, what is found here, (Z2)F � [ZN ]2 and (Z2)F � [ZN+4]2 mixed anomalies,
are very much analogous to the time reversal - 1-form N mixed anomaly discovered in the
pure YM at ✓ = ⇡. Here the time reversal (CP symmetry) is replaced by 2⇡ space rotation.

Note however that the way the failure of the ’t Hooft anomaly matching is reflected in
the infrared physics is different here from the CP invariance for the pure YM at ✓ = ⇡. In
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before the gauging of the 1-form center symmetry:

they continue to be matched after the replacement

🔵

🔵

, automatically
No new info by the gauging

 of the 1-fom ZN 

A different story for discrete (Z2 )F  anomaly:   before the gauging of the 1-form 
center symmetry (absence of) the anomaly matched by 

both 0-form symmetries they carry charges under the gauged center N or N+4 symmetry.
The anomalies involving U(1) ⌘ and ( 2)F are both modified nontrivially by the presence
of the 2-form gauge fields,

�

B(2)
c , B(2)

f

�

.
There is an important difference, however. In the case of the continuous SU(N + 4)⇥

U(1) ⌘ symmetries, the anomaly triangles were all matched in the UV and IR before the
introduction of
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B(2)
c , B(2)

f

�

. For instance, the [U(1) ⌘]3 anomaly takes the simple form in
the 6D action, C (dA)3. The anomaly coefficients satisfy, in the chirally symmetric vacuum
of Sec. 2.1, the matching condition,

CUV = CIR . (8.1)

Now the introduction of the 2-form gauge fields
�

B(2)
c , B(2)

f

�

modifies all the fields, e.g.,

dA ! dA+B(2)
c +B(2)

f , dA(1)
2 ! dA(1)

2 � N

2
B(2)

c � N + 4

2
B(2)
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etc., but clearly the matching condition (8.1) for the conventional U ⌘(1)3 anomaly is
sufficient to guarantee automatically the matching of the anomaly

C (dA+B(2)
c +B(2)

f )3 , (8.3)

in the modified theory. The same applies to all triangle anomalies involving the continuous
SU(N + 4)⇥ U(1) ⌘ symmetries.

It is a different story for the anomalies involving the discrete symmetry ( 2)F . Before
the introduction of

�

B(2)
c , B(2)

f

�

, ( 2)F was a nonanomalous symmetry of the system. But
this was so due to the integer instanton numbers, not because of an algebraic cancellation
between the contributions from different fermions, as for U ⌘(1). Also, the ( 2)F anomaly
"matching" was not due to the equality of the coefficients as in (8.1), but only due to
an equality modulo 2 of the coefficients, and under the assumption of integer instanton
numbers

1

8⇡2

Z

⌃4

F 2 2 . (8.4)

This means that the introduction of the 2-form gauge fields (which can introduce nontrivial
’t Hooft fluxes in various torus, hence fractional instanton numbers) may make it anomalous,
and as a consequence may invalidate the discrete anomaly matching. Our calculation shows
that it indeed does.

The result found here is somewhat reminiscent of the fate of the time reversal (or CP)
symmetry in the infrared, in pure SU(N) YM theory with ✓ = ⇡ [23]. Note that before
introducing the N 1-form gauging, time reversal invariance at ✓ = ⇡ holds because of the
integer instanton numbers, just as the fermion parity symmetry ( 2)F of our system. From
this prospect, what is found here, (Z2)F � [ZN ]2 and (Z2)F � [ZN+4]2 mixed anomalies,
are very much analogous to the time reversal - 1-form N mixed anomaly discovered in the
pure YM at ✓ = ⇡. Here the time reversal (CP symmetry) is replaced by 2⇡ space rotation.

Note however that the way the failure of the ’t Hooft anomaly matching is reflected in
the infrared physics is different here from the CP invariance for the pure YM at ✓ = ⇡. In
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modulo 2,  and by the integer instanton numbers

both 0-form symmetries they carry charges under the gauged center N or N+4 symmetry.
The anomalies involving U(1) ⌘ and ( 2)F are both modified nontrivially by the presence
of the 2-form gauge fields,
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B(2)
c , B(2)

f
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.
There is an important difference, however. In the case of the continuous SU(N + 4)⇥

U(1) ⌘ symmetries, the anomaly triangles were all matched in the UV and IR before the
introduction of
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c , B(2)
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. For instance, the [U(1) ⌘]3 anomaly takes the simple form in
the 6D action, C (dA)3. The anomaly coefficients satisfy, in the chirally symmetric vacuum
of Sec. 2.1, the matching condition,

CUV = CIR . (8.1)

Now the introduction of the 2-form gauge fields
�

B(2)
c , B(2)

f

�

modifies all the fields, e.g.,

dA ! dA+B(2)
c +B(2)

f , dA(1)
2 ! dA(1)
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2
B(2)

c � N + 4

2
B(2)

f , (8.2)

etc., but clearly the matching condition (8.1) for the conventional U ⌘(1)3 anomaly is
sufficient to guarantee automatically the matching of the anomaly

C (dA+B(2)
c +B(2)

f )3 , (8.3)

in the modified theory. The same applies to all triangle anomalies involving the continuous
SU(N + 4)⇥ U(1) ⌘ symmetries.

It is a different story for the anomalies involving the discrete symmetry ( 2)F . Before
the introduction of

�

B(2)
c , B(2)

f

�

, ( 2)F was a nonanomalous symmetry of the system. But
this was so due to the integer instanton numbers, not because of an algebraic cancellation
between the contributions from different fermions, as for U ⌘(1). Also, the ( 2)F anomaly
"matching" was not due to the equality of the coefficients as in (8.1), but only due to
an equality modulo 2 of the coefficients, and under the assumption of integer instanton
numbers

1

8⇡2

Z

⌃4

F 2 2 . (8.4)

This means that the introduction of the 2-form gauge fields (which can introduce nontrivial
’t Hooft fluxes in various torus, hence fractional instanton numbers) may make it anomalous,
and as a consequence may invalidate the discrete anomaly matching. Our calculation shows
that it indeed does.

The result found here is somewhat reminiscent of the fate of the time reversal (or CP)
symmetry in the infrared, in pure SU(N) YM theory with ✓ = ⇡ [23]. Note that before
introducing the N 1-form gauging, time reversal invariance at ✓ = ⇡ holds because of the
integer instanton numbers, just as the fermion parity symmetry ( 2)F of our system. From
this prospect, what is found here, (Z2)F � [ZN ]2 and (Z2)F � [ZN+4]2 mixed anomalies,
are very much analogous to the time reversal - 1-form N mixed anomaly discovered in the
pure YM at ✓ = ⇡. Here the time reversal (CP symmetry) is replaced by 2⇡ space rotation.

Note however that the way the failure of the ’t Hooft anomaly matching is reflected in
the infrared physics is different here from the CP invariance for the pure YM at ✓ = ⇡. In
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So the discrete (Z2 )F  anomaly may arise after gauging of the 1-form  
and the UV-IR matching may be ruined.   Our calculations show it indeed does.     

🔵 BTW,  the result  “C=1”  we found is the only meaningful and nontrivial answer.

(Even if it does not guarantee in itself that everything is OK)

Gauging N = [ N ⇢ SU(N)] \ [U ⌘(1)⇥ 2]

(i) The relation between 2 and SU(N)⇥U ⌘(1) ((3.22) and (3.23)) show that 2 is indeed
included in N ⇥ U ⌘(1), where the second factor is a particular discrete subgroup
of U ⌘(1). We saw already that nevertheless 2 is not necessarily non-anomalous for
generic SU(N) gauge configurations. At the same time, these relations show that
the even elements of N ⇥ U ⌘(1) are trivial: they correspond to

 !  , ⌘ ! ⌘

(even elements of 2).

(ii) Stated di↵erently, the symmetry of the even N theory can be written alternatively as

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)

ZN/2 ⇥ Z(N+4)/2 ⇥ 2
.

There is nothing wrong with this, but then the 1-form symmetry one may gauge is

ZN/2 ⇢ SU(N) \ U ⌘(1).

or similarly Z(N+4)/2. You can try to introduce B fields, but nothing can be gained.
B fields have the integral over ⌃2 ( flux ) 2⇡ · 2/N (double of Eq. (5.25)) in this case;
and of course, there is no (Z2)F anomaly to talk about.

(iii) If instead we decide (it is up to us) to ”gauge” the 1-form symmetry

N ⇢ SU(N) \ (U ⌘(1)⇥ (Z2)F ) ,

using the symmetry of the system written as (3.21):

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
,

then one must introduce all gauge fields listed at the beginning of Sec. 5.1, including
the continuous A2 fields for (Z2)F . Bc and Bf fields have fluxes in (5.11), (5.12),
but only the minimum nontrivial fluxes have meaning, n1 = m1 = 1. The said
1-form gauging means that the system must be made invariant under continuous
transformations, (5.5), (5.10). And this includes a continuous (Z2)F (A2) gauge
transformations, see (5.12).

(iv) By the way this is what one does formally in the usual (no B fields) theory to compute
the (Z2)F anomaly. See our check, in Sec. 5.3, the first term in Eq. (5.33).

(v) If you discuss the cocycle condition by using the SU(N) and U ⌘(1) transformations
only, you get only plus sign in (5.26), (5.27), and you are back to the gauging of N/2

- the option (ii) above.

1

C= a fractional number, 1/2, 1/N, ..      :  nonsense.
C= 2, 4, ..   :  well it’s fine but implies nothing.   

frac
tional t
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l

charg
e

N=odd



♦ Our result is formally similar to the mixed anomaly

found in the pure SU(N) YM  at   Gaiotto,  Kapustin, 

Komargodski, Seiberg,. ‘17

But the way the failure of the t Hooft matching manifests itself in the IR is different!

🔵 In the pure SU(N) YM  at CP( T) is spontaneously broken by doubly

 degenerate vacua

🔵 In our case,  (space       rotation)not  but

 T.D. Lee

Gauging N = [ N ⇢ SU(N)] \ [U ⌘(1)⇥ 2]

(i) The relation between 2 and SU(N)⇥U ⌘(1) ((3.22) and (3.23)) show that 2 is indeed
included in N ⇥ U ⌘(1), where the second factor is a particular discrete subgroup
of U ⌘(1). We saw already that nevertheless 2 is not necessarily non-anomalous for
generic SU(N) gauge configurations. At the same time, these relations show that
the even elements of N ⇥ U ⌘(1) are trivial: they correspond to

 !  , ⌘ ! ⌘

(even elements of 2).

(ii) Stated di↵erently, the symmetry of the even N theory can be written alternatively as

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)

ZN/2 ⇥ Z(N+4)/2 ⇥ 2
.

There is nothing wrong with this, but then the 1-form symmetry one may gauge is

ZN/2 ⇢ SU(N) \ U ⌘(1).

or similarly Z(N+4)/2. You can try to introduce B fields, but nothing can be gained.
B fields have the integral over ⌃2 ( flux ) 2⇡ · 2/N (double of Eq. (5.25)) in this case;
and of course, there is no (Z2)F anomaly to talk about.

(iii) If instead we decide (it is up to us) to ”gauge” the 1-form symmetry

N ⇢ SU(N) \ (U ⌘(1)⇥ (Z2)F ) ,

using the symmetry of the system written as (3.21):

G = SU(N)⇥
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
,

then one must introduce all gauge fields listed at the beginning of Sec. 5.1, including
the continuous A2 fields for (Z2)F . Bc and Bf fields have fluxes in (5.11), (5.12),
but only the minimum nontrivial fluxes have meaning, n1 = m1 = 1. The said
1-form gauging means that the system must be made invariant under continuous
transformations, (5.5), (5.10). And this includes a continuous (Z2)F (A2) gauge
transformations, see (5.12).

(iv) By the way this is what one does formally in the usual (no B fields) theory to compute
the (Z2)F anomaly. See our check, in Sec. 5.3, the first term in Eq. (5.33).

(v) If you discuss the cocycle condition by using the SU(N) and U ⌘(1) transformations
only, you get only plus sign in (5.26), (5.27), and you are back to the gauging of N/2

- the option (ii) above.

1

is spontaneously broken by  

beta function is
b0 = 11N � (N + 2)� (N + 4) = 9N � 6 . (2.3)

The fermion kinetic term is given by

 �µ
�

@ +RS(a)
�

µ
PL +

N+4
X

B=1

⌘B�
µ
�

@ +RF⇤(a)
�

µ
PL⌘B , (2.4)

with an obvious notation. In order to emphasize that this is the chiral gauge theory, we
explicitly write the chiral projector PL = 1��5

2 in the fermion kinetic terms. The symmetry
group is

SU(N)c ⇥ SU(N + 4)⇥ U(1) ⌘ , (2.5)

where U(1) ⌘ is the anomaly-free combination of U(1) and U(1)⌘,

U(1) ⌘ :  ! ei(N+4)↵ , ⌘ ! e�i(N+2)↵⌘ . ↵ 2 . (2.6)

The group (2.5) is actually not the true symmetry group of our system, but its covering
group. It captures correctly the local aspects, e.g., how the group behaves around the
identity element, and thus is sufficient for the consideration of the conventional, perturbative
triangle anomalies associated with it, reviewed below in this section.

Its global structures however contain some redundancies, which must be modded out
appropriately in order to eliminate the double counting. They furthermore depend crucially
on whether N is odd or even. These questions will be studied more carefully in Sec. 3, as
they turn out to be central to the main theme of this work: the determination of the mixed
anomalies and the associated, generalized ’t Hooft anomaly matching conditions.

2.1 Chirally symmetric phase

It was noted earlier [8, 14, 15] that the standard ’t Hooft anomaly matching conditions
associated with the continuous symmetry group U(1) ⌘ ⇥ SU(N + 4) allowed a chirally
symmetric, confining vacuum in the model. Let us indeed assume that no condensates
form, the system confines, and the flavor symmetry is unbroken. The candidate massless
composite fermions ("baryons") are:

B[AB] =  ij⌘Ai ⌘
B
j , A,B = 1, 2, . . . , N + 4 , (2.7)

antisymmetric in A $ B. All the SU(N + 4)⇥U(1) ⌘ anomaly triangles are saturated by
B[AB] as can be seen by inspection of Table 1. 5

2.2 Color-flavor locked Higgs phase

As the theory is very strongly coupled in the infrared (see (2.3)), it is also natural to consider
the possibility that a bifermion condensate

h {ij}⌘Bi i = c⇤3�jB 6= 0 , j, B = 1, 2, . . . N , c ⇠ O(1) (2.8)
5There are discrete unbroken symmetries  and  which will be defined later (3.5), (3.6) which

are already contained in the covering space (2.5). The discrete anomalies  SU(N)2,  SU(N + 4)2,
⌘ SU(N)2 and ⌘ SU(N � 4)2 are also matched as a direct consequence.

– 4 –

♦ Conclusion:

The chirally symmetric confining vacuum does not survive our more refined
consistency check:  it cannot be realized dynamically in the IR

The dynamical Higgs vacuum looks OK

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

♦

♦

at least fo
r 

N even

therefore



THE END

Thank you for your attention !



[8] S. Bolognesi, K. Konishi and M. Shifman, Patterns of symmetry breaking in chiral QCD,
Phys. Rev. D 97, no. 9, 094007 (2018) [arXiv:1712.04814 [hep-th]].

[9] S. Bolognesi and K. Konishi, Dynamics and symmetries in chiral SU(N) gauge theories,
Phys. Rev. D 100, no. 11, 114008 (2019) [arXiv:1906.01485 [hep-th]].

[10] Stuart Raby, Savas Dimopoulos, and Leonard Susskind, Tumbling Gauge Theories, Nucl.
Phys. B169, 373 (1980).

[11] G. ’t Hooft, Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking, in
Recent Developments In Gauge Theories, Eds. G. ’t Hooft, C. Itzykson, A. Jaffe, H.
Lehmann, P. K. Mitter, I. M. Singer and R. Stora, (Plenum Press, New York, 1980)
[Reprinted in Dynamical Symmetry Breaking, Ed. E. Farhi et al. (World Scientific,
Singapore, 1982) p. 345.

[12] I. Bars and S. Yankielowicz, Composite quarks and leptons as solutions of anomaly
constraints, Phys. Lett. 101B(1981) 159.

[13] C. Q. Geng and R. E. Marshak, “Two Realistic Preon Models With SU(N) Metacolor
Satisfying Complementarity,” Phys. Rev. D 35, 2278 (1987). doi:10.1103/PhysRevD.35.2278.

[14] T. Appelquist, A. G. Cohen, M. Schmaltz and R. Shrock, New constraints on chiral gauge
theories, Phys. Lett. B 459, 235 (1999) [hep-th/9904172].

[15] T. Appelquist, Z. y. Duan and F. Sannino, Phases of chiral gauge theories, Phys. Rev. D 61,
125009 (2000) [hep-ph/0001043].

[16] Y. L. Shi and R. Shrock, AkF̄ chiral gauge theories, Phys. Rev. D 92,105032 (2015)
[arXiv:1510.07663 [hep-th]]; Y. L. Shi and R. Shrock, Renormalization-Group Evolution and
Nonperturbative Behavior of Chiral Gauge Theories with Fermions in Higher-Dimensional
Representations, Phys. Rev. D 92, 125009 (2015) [arXiv:1509.08501 [hep-th]].

[17] E. Poppitz and Y. Shang, Chiral Lattice Gauge Theories Via Mirror-Fermion Decoupling: A
Mission (im)Possible?, Int. J. Mod. Phys. A 25, 2761 (2010) [arXiv:1003.5896 [hep-lat]].

[18] A. Armoni and M. Shifman, A Chiral SU(N) Gauge Theory Planar Equivalent to
Super-Yang-Mills, Phys. Rev. D 85, 105003 (2012) [arXiv:1202.1657 [hep-th]].

[19] E. Eichten, R. D. Peccei, J. Preskill and D. Zeppenfeld, Chiral Gauge Theories in the 1/n
Expansion, Nucl. Phys. B 268, 161 (1986).

[20] J. Goity, R. D. Peccei and D. Zeppenfeld, Tumbling and Complementarity in a Chiral Gauge
Theory, Nucl. Phys. B 262, 95 (1985).

[21] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional
gauge theories, JHEP 1308, 115 (2013) [arXiv:1305.0318 [hep-th]].

[22] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP
1502, 172 (2015) [arXiv:1412.5148 [hep-th]].

[23] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal, and
Temperature, JHEP 1705, 091 (2017) [arXiv:1703.00501 [hep-th]].

[24] A. Karasik and Z. Komargodski, “The Bi-Fundamental Gauge Theory in 3+1 Dimensions:
The Vacuum Structure and a Cascade,” JHEP 1905, 144 (2019)
doi:10.1007/JHEP05(2019)144 [arXiv:1904.09551 [hep-th]].

[25] Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite
topological angles, JHEP 1706, 102 (2017) [arXiv:1705.01949 [hep-th]].

– 31 –

back to p.4 



Axial / chiral anomalies

• No conservation in all channels

• Observable (calculable) effects

• Gauge vertices: 

Gauge symmetry destroyed  (inconsistency)

• External “gauge” fields: 

Abelian / nonAbelian anomalies 

♦

♦ Anomaly cancellation needed
OK in

 (NOT an inconsistency)
♦ observable effects 

• ’t Hooft anomaly matching conditions

etc.   Wess-Zumino-Witten (5D) action

Fukuda-Miyamoto ‘49  Steinberger ‘49,   Schwinger ‘51, 

Adler ‘69,  Bell, Jackiw ‘69, Bardeen ’69, Wess-Zumino, ’71 …

♦ Mixed ’t Hooft’s  anomalies 

• Other new anomalies  
Garcia-Etxebarria-Montero ’18,  Wang-Wen-Witten ’18,  Wan-Wang ’19;   

Back to p.9Dai-Freed ‘15

’t Hooft anomaly :

obstruction to gauging



🔵

From 0-form symmetries (acting on local operators)
to k-form symmetries (acting on line, surface, etc operators)

e.g.  the center symmetry in SU(N) YM (k=1)

Seiberg, Kapustin, Aharony, Gaiotto, 

Tachikawa, Willet, Komargodski, ..

Poppitz,  K
ikuchi, Tanizaki, Sakai, 

Shimizu, Yonekura, 

’05-‘18

ei
H
� A ! ⌦N ei

H
� A , ⌦N = e2⇡i/N 2 N

2

Wilson loop

Polyakov loop

Criteria fo
r different phases

Phases of the system not described by the VEV
of local operators   

e

i
H
� A ! ⌦N e

i
H
� A

, ⌦N = e

2⇡i/N 2 N

1

8⇡

Z
F ^ F =

1

8⇡

Z
d

4
xFµ⌫F̃

µ⌫

h�(x)i , h ̄(x) (x)i

2

Nambu-Jona Lasinio

Landau-Ginzburg

 :  a change of PARADIGM !  
Haldane ’83

Wen, ’89

Wang, … …

♦

#SPT Symmetry-protected

-topological order

Generalized symmetries

♦ Higher form symmetries are all Abelian



“Gauging” the 1-form discrete ZN  symmetry    in SU(N) YM   :  

Introduce the “U(N)”  gauge field 

imposing the 1-form gauge invariance
where

NB(2)
= dB(1) ,

B(1) ! B(1)
+N� , B(2) ! B(2)

+ d� .

a ⌘ aµdx
µ

, F (a) ⌘ da+ a2 , F µ⌫

= @µa⌫ � @⌫aµ � [aµ, a⌫ ] ;

a2 ⌘ a ^ a , a 2 su(N) a ! g�1ag + g�1dg , g 2 SU(N)

ã 2 u(N) , � ⌘ �µdx
µ

2 u(1)

a ! g�1ag + g�1dg , g(x+ L) = e2⇡i/Ng(x) , (4.16)

exp i

I

L

a ! e2⇡i/N exp i

I

L

a (4.17)

The Dirac operators are

d+Aã+ A
�

, d+ ã+ A
⌘

. (4.18)

In order for these to be invariant, we need

Aã ! Aã+ 2� . (4.19)

It means that the gauge invariant combinations are

Aã� 2

N
B(1) , A

�

� 2

N
B(1) , A

⌘

+

1

N
B(1) , is (4.20)
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The massless baryons (4.7) saturate all the anomalies associated with SU(N �4)cf ⇥
U(1)

0. As noted by Appelquist, Duan, Sannino [4], the �
i2j2 fermions remain massless

and strongly coupled to the SU(4)

c

. We may assume that SU(4)

c

confines, and the
condensate

h��i 6= 0 , (4.12)

in

¯

⌦

¯

!

¯

� . . . , (4.13)

forms and �
i2j2 acquire dynamically mass. Assume that the massless baryons are:

B{AB}
= �[ij] ⌘̃

i A⌘̃j B , A,B = 1, 2, . . . (N � 4) , (4.14)

fields SU(N � 4)

cf

U 0
(1) SU(4)

c

�
i1j1

¯

N (N�4)(N�5)
2 · (·)

�
i1j2 4 ·

¯

N

2 (N � 4) ·
¯

�
i2j2

4·3
2 · (·) 0

¯

⌘̃A, i1 � �N (N � 4)

2 · (·)
⌘̃A, i2

4 · �N

2 (N � 4) ·
B{AB} �N (N�4)(N�3)

2 · (·)

Table 11. Color-flavor locking in the (0, 1) model. The color index i1 or j1 runs up to
N � 4. The rest is indicated by i2 or j2.

4.3 Mixed anomalies

As in the (1, 0) model, there is a color-flavor locked center symmetry

A
�

! A
�

+ 2� , A
⌘

! A
⌘

� � , (4.15)

together with the U(N) gauge fields

a ! ã ⌘ a+
1

N
B(1)

c

N

; F (a) ! ˜F (ã) = F (a) + B(2)
c

N

ã ! ã+ �
N
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where
NB(2)

= dB(1) ,

B(1) ! B(1)
+N� , B(2) ! B(2)

+ d� .

a ⌘ aµdx
µ

, F (a) ⌘ da+ a2 , F µ⌫

= @µa⌫ � @⌫aµ � [aµ, a⌫ ] ;

a2 ⌘ a ^ a , a 2 su(N) a ! g�1ag + g�1dg , g 2 SU(N)

ã 2 u(N) , � ⌘ �µdx
µ

2 u(1)

a ! g�1ag + g�1dg , g(x+ L) = e2⇡i/Ng(x) , (4.16)

exp i

I

L

a ! e2⇡i/N exp i

I

L

a (4.17)

The Dirac operators are

d+Aã+ A
�

, d+ ã+ A
⌘

. (4.18)

In order for these to be invariant, we need

Aã ! Aã+ 2� . (4.19)

It means that the gauge invariant combinations are

Aã� 2

N
B(1) , A

�

� 2

N
B(1) , A

⌘

+

1

N
B(1) , is (4.20)
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where
NB(2)

= dB(1) ,

B(1) ! B(1)
+N� , B(2) ! B(2)

+ d� .

a ⌘ aµdx
µ

, F (a) ⌘ da+ a2 , F µ⌫

= @µa⌫ � @⌫aµ � [aµ, a⌫ ] ;

a2 ⌘ a ^ a , a 2 su(N) a ! g�1ag + g�1dg , g 2 SU(N)

ã 2 u(N) , � ⌘ �µdx
µ

2 u(1)

a ! g�1ag + g�1dg , g(x+ L) = e2⇡i/Ng(x) , (4.16)

exp i

I

L

a ! e2⇡i/N exp i

I

L

a (4.17)

The Dirac operators are

d+Aã+ A
�

, d+ ã+ A
⌘

. (4.18)

In order for these to be invariant, we need

Aã ! Aã+ 2� . (4.19)

It means that the gauge invariant combinations are

Aã� 2

N
B(1) , A

�

� 2

N
B(1) , A

⌘

+

1

N
B(1) , is (4.20)
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(*)

where
NB(2)

= dB(1) ,

B(1) ! B(1)
+N� , B(2) ! B(2)

+ d� .

a ⌘ aµdx
µ

, F (a) ⌘ da+ a2 , F µ⌫

= @µa⌫ � @⌫aµ � [aµ, a⌫ ] ;

a2 ⌘ a ^ a , a 2 su(N) a ! g�1ag + g�1dg , g 2 SU(N)

ã 2 u(N) , � ⌘ �µdx
µ

2 u(1)

a ! g�1ag + g�1dg , g(x+ L) = e2⇡i/Ng(x) , (4.16)

exp i

I

L

a ! e2⇡i/N exp i

I

L

a (4.17)

The Dirac operators are

d+Aã+ A
�

, d+ ã+ A
⌘

. (4.18)

In order for these to be invariant, we need

Aã ! Aã+ 2� . (4.19)

It means that the gauge invariant combinations are

Aã� 2

N
B(1) , A

�

� 2

N
B(1) , A

⌘

+

1

N
B(1) , is (4.20)
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♦

SU(N) / ZN   gauge theory

where
NB(2)

= dB(1) ,

B(1) ! B(1)
+N� , B(2) ! B(2)

+ d� .

1

8⇡2

Z

⌃4

trF 2 �! 1

8⇡2

Z

⌃4

tr (

˜F (ã)� B(2)
c

)

2 (4.16)

=

1

8⇡2

Z
tr (

˜F (ã))2 � N

8⇡2

Z
(B(2)

c

)

2
= �

N
(4.17)

1

8⇡2

Z

⌃4

trF 2
=

1

32⇡2

Z
d4xFA

µ⌫

˜FA

µ⌫

2 (4.18)

a ⌘ aµdx
µ

, F (a) ⌘ da+ a2 , F µ⌫

= @µa⌫ � @⌫aµ � [aµ, a⌫ ] ;

a2 ⌘ a ^ a , a 2 su(N) a ! g�1ag + g�1dg , g 2 SU(N)

ã 2 u(N) , � ⌘ �µdx
µ

2 u(1)

a ! g�1ag + g�1dg , g(x+ L) = e2⇡i/Ng(x) , (4.19)

exp i

I

L

a ! e2⇡i/N exp i

I

L

a (4.20)

The Dirac operators are

d+Aã+ A
�

, d+ ã+ A
⌘

. (4.21)

In order for these to be invariant, we need

Aã ! Aã+ 2� . (4.22)

It means that the gauge invariant combinations are

Aã� 2

N
B(1) , A

�

� 2

N
B(1) , A

⌘

+

1

N
B(1) , is (4.23)
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where
NB(2)

= dB(1) ,

B(1) ! B(1)
+N� , B(2) ! B(2)

+ d� .

1

8⇡2

Z

⌃4

trF 2 �! 1

8⇡2

Z

⌃4

tr (

˜F (ã)� B(2)
c

)

2 (4.16)

=

1

8⇡2

Z
tr (

˜F (ã))2 � N

8⇡2

Z
(B(2)

c

)

2
= �

N
(4.17)

1

8⇡2

Z

⌃4

trF 2
=

1

32⇡2

Z
d4xFA

µ⌫

˜FA

µ⌫

2 (4.18)

a ⌘ aµdx
µ

, F (a) ⌘ da+ a2 , F µ⌫

= @µa⌫ � @⌫aµ � [aµ, a⌫ ] ;

a2 ⌘ a ^ a , a 2 su(N) a ! g�1ag + g�1dg , g 2 SU(N)

ã 2 u(N) , � ⌘ �µdx
µ

2 u(1)

a ! g�1ag + g�1dg , g(x+ L) = e2⇡i/Ng(x) , (4.19)

exp i

I

L

a ! e2⇡i/N exp i

I

L

a (4.20)

The Dirac operators are

d+Aã+ A
�

, d+ ã+ A
⌘

. (4.21)

In order for these to be invariant, we need

Aã ! Aã+ 2� . (4.22)

It means that the gauge invariant combinations are

Aã� 2

N
B(1) , A

�

� 2

N
B(1) , A

⌘

+

1

N
B(1) , is (4.23)
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fractional topological
charge

The massless baryons (4.7) saturate all the anomalies associated with SU(N �4)cf ⇥
U(1)

0. As noted by Appelquist, Duan, Sannino [4], the �
i2j2 fermions remain massless

and strongly coupled to the SU(4)

c

. We may assume that SU(4)

c

confines, and the
condensate

h��i 6= 0 , (4.12)

in

¯

⌦

¯

!

¯

� . . . , (4.13)

forms and �
i2j2 acquire dynamically mass. Assume that the massless baryons are:

B{AB}
= �[ij] ⌘̃

i A⌘̃j B , A,B = 1, 2, . . . (N � 4) , (4.14)

fields SU(N � 4)

cf

U 0
(1) SU(4)

c

�
i1j1

¯

N (N�4)(N�5)
2 · (·)

�
i1j2 4 ·

¯

N

2 (N � 4) ·
¯

�
i2j2

4·3
2 · (·) 0

¯

⌘̃A, i1 � �N (N � 4)

2 · (·)
⌘̃A, i2

4 · �N

2 (N � 4) ·
B{AB} �N (N�4)(N�3)

2 · (·)

Table 11. Color-flavor locking in the (0, 1) model. The color index i1 or j1 runs up to
N � 4. The rest is indicated by i2 or j2.

4.3 Mixed anomalies

As in the (1, 0) model, there is a color-flavor locked center symmetry

A
�

! A
�

+ 2� , A
⌘

! A
⌘

� � , (4.15)

together with the U(N) gauge fields

a ! ã ⌘ a+
1

N
B(1)

c

N

; F (a) ! ˜F (ã) = F (a) + B(2)
c

N

ã ! ã+ �
N
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♦ Gauging a discrete symmetry = identifying the configurations 
connected by it and eliminating the double counting 

cfr. “ordinary” gauging of a 

continuous symmetry

’t Hooft’s  fr
actional 

magnetic flux

anomaly can be evaluated starting from a 6D (six-dimensional) Abelian anomaly [41, 42]3

1

24⇡2
tr

R

�
F̃ � B(2)

c

+ dA
 

�3

=
D(R)

24⇡2
tr
�
F̃ � B(2)

c

)3 +
2T (R)

8⇡2
tr
�
F̃ � B(2)

c

�2 ^ dA
 

+ . . . . (2.8)

Let us recall that, in the standard quantization (i.e., in the absence of the 1-form discrete

symmetry gauging),
B(1)

c , B(2)
c ! 0 , F̃ (ã) ! F (a) , (2.9)

and the above reduces to

D(R)

24⇡2
trF 3 +

2T (R)

8⇡2
trF 2 ^ dA

 

+ . . . . (2.10)

By using the identity [42, 41]

trF 3 = d {tr(a(da)2 +
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Abstract

Consequences of gauging exact C

k

center symmetries in several simple SU(N)

gauge theories, where k is a divisor of N , are investigated. Models discussed in-

clude: the SU(N) gauge theory with N

f

copies of Weyl fermions in self-adjoint

single-column antisymmetric representation, the well-discussed adjoint QCD, QCD-

like theories in which the quarks are in a two-index representation of SU(N), and a

chiral SU(N) theory with fermions in the symmetric as well as in anti-antisymmetric

representations but without fundamentals. Mixed ’t Hooft anomalies between the

1-form C

k

symmetry and some 0-form (standard) discrete symmetry provide us with

useful information about the infrared dynamics of the system. In some cases they

give decisive indication to select only few possiblities for the infrared phase of the

theory.

1

symmetries in an SU(N) model:   k= divisor of N

Introduce the pair 

symmetry [1]-[20] In some cases, this leads to mixed ([0-form]-[1-form]) ’t Hooft anomalies;

they carry nontrivial information on possible infrared dynamics of the system.

The concept of gauging a discrete symmetry might sound a bit peculiar from the point

of view of conventional idea of gauging a global flavor symmetry, i.e., that of taking the

transformation parameters as functions of spacetime and turning it to a local gauge sym-

metry. Here the gauging of a 1-form discrete symmetry means identifying the field con-

figurations related by it, and eliminating the associated redundancies. In the case of the
C

N

center symmetry in SU(N) gauge theory, gauging it e↵ectively reduces the theory to

SU(N)/
N

theory [1]-[20]. We review below (Sec. 2) how this procedure works for the

case of a subgroup, ZC

k

⇢ C

N

discrete center symmetry.

The aim of the present paper is to apply these new ideas to several simple SU(N) gauge

theories, which possess exact C

k

color center symmetries (k being a divisor of N), and to

examine the implications of gauging these discrete C

k

center symmetries on their infrared

dynamics. In some cases our discussion is a simple extension of (or comments on) the

results already found in the literature; in most others the results presented here are new,

to the best of our knowledge. Here we discuss the following models: in Section 3 the SU(N)

gauge theory with N
f

copies of Weyl fermions in self-adjoint single column antisymmetric

representation; in Section 4 the adjoint QCD discussed extensively in the literature; in

Section 5 QCD-like theories with quarks in two-index representations of SU(N), and in

Section 6 some chiral SU(N) theories with fermions in the symmetric as well as in anti-

antisymmetric representations but without those in the fundamental representation. We

conclude in Section 7 with some general discussion. Notes on Dynkin indices for some

representations in SU(N) group can be found in Appendix A.

2 Gauging a discrete 1-form symmetry

As the gauging of a discrete center symmetry and the calculation of anomalies under such

gauging are the basic tools of this paper and will be used repeatedly below, let us briefly

review the procedure here. The procedure was formulated in [4] and used in [5] for SU(N)

Yang-Mills theory at ✓ = ⇡, based on and building upon some earlier results [1]-[3], and

then applied to other systems and further developed: see [6]-[10], and [13]-[19]. The details

and good reviews can be found in these references and will not be repeated here, except

for a few basics reviewed below.

We recall that in order to gauge a ZC

k

discrete center symmetry in an SU(N) gauge

theory (k being a divisor of N), one introduces a pair of U(1) 2-form and 1-form ZC

k

gauge

fields (B(2)
c

, B
(1)
c

) satisfying the constraint [4]

kB(2)
c = dB(1)

c . (2.1)

3
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and good reviews can be found in these references and will not be repeated here, except
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We recall that in order to gauge a ZC

k

discrete center symmetry in an SU(N) gauge

theory (k being a divisor of N), one introduces a pair of U(1) 2-form and 1-form ZC

k

gauge

fields (B(2)
c

, B
(1)
c

) satisfying the constraint [4]

kB(2)
c = dB(1)

c . (2.1)

3

This constraint satisfies the invariance under the U(1) 1-form gauge transformation,

B(2)
c 7! B(2)

c + d�c, B(1)
c 7! B(1)

c + k�c, (2.2)

where �c is the 1-form gauge function, satisfying the quantized flux

1

2⇡

Z

⌃2

d�c 2 . (2.3)

The SU(N) dynamical gauge field a is embedded into a U(N) gauge field,

ea = a+
1

k
B(1)

c , (2.4)

and one requires invariance under U(N) gauge transformation. The gauge field tensor F (a)

is replaced by

F (a) ! F̃ (ã)� B(2)
c . (2.5)

This determines the way these ZC

k

gauge fields are coupled to the standard gauge fields

a; the matter fields must also be coupled to the U(N) gauge fields, such that the 1-form

gauge invariance, (2.2), is satisfied. For a Weyl fermion  this is achieved by writing the

fermion kinetic term as

 ̄ �µ(@ +R(ã)� n(R)

k
B(1)

c

)
µ

P
L

 , (2.6)

with R(ã) appropriate for the representation to which  belongs, and n(R) is the N -ality

of the representation R. P
L

is the projection operator on the left-handed component of the

Dirac spinor. This whole procedure e↵ectively eliminates the ZC

k

redundancy and defines

a SU(N)/Z
k

theory.

Also, in order to study the anomaly of U
 

(1) symmetry (or of a discrete subgroup of

it),  ! ei↵ , we introduce an external U
 

(1) gauge field A
 

, and couple it to the fermion

as

 ̄ �µ(@ +R(ã)� n(R)

k
B(1)

c

+ A
 

)
µ

P
L

 . (2.7)

It is easy now to compute the anomalies following the standard Stora-Zumino descent

procedure [41, 42], see also [16]. For simplicity we write the expressions for a single fermion

and for an Abelian symmetry, but these can be readily generalized. A good recent review

of this renowned constructions can be found in [43]. According to this procedure, the
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with R(ã) appropriate for the representation to which  belongs, and n(R) is the N -ality

of the representation R. P
L

is the projection operator on the left-handed component of the

Dirac spinor. This whole procedure e↵ectively eliminates the ZC

k

redundancy and defines

a SU(N)/Z
k

theory.

Also, in order to study the anomaly of U
 

(1) symmetry (or of a discrete subgroup of

it),  ! ei↵ , we introduce an external U
 

(1) gauge field A
 

, and couple it to the fermion

as

 ̄ �µ(@ +R(ã)� n(R)
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4

Imbed SU(N) in U(N) with inv under

anomaly can be evaluated starting from a 6D (six-dimensional) Abelian anomaly [41, 42]3

1

24⇡2
tr

R

�
F̃ � B(2)

c

+ dA
 

�3

=
D(R)

24⇡2
tr
�
F̃ � B(2)

c

)3 +
2T (R)

8⇡2
tr
�
F̃ � B(2)

c

�2 ^ dA
 

+ . . . . (2.8)

Let us recall that, in the standard quantization (i.e., in the absence of the 1-form discrete

symmetry gauging),
B(1)

c , B(2)
c ! 0 , F̃ (ã) ! F (a) , (2.9)

and the above reduces to

D(R)

24⇡2
trF 3 +

2T (R)

8⇡2
trF 2 ^ dA

 

+ . . . . (2.10)

By using the identity [42, 41]

trF 3 = d {tr(a(da)2 +
3

5
(a)5 +

3

2
a3da)} (2.11)

(also trF 2 = d {tr(ada + 2
3
a3)}) the first term leads to the SU(N) gauge anomalies. The

second term gives the boundary term

2T (R)

8⇡2

Z

⌃5

trF 2 ^ A
 

(2.12)

which, after variations
A
 

⌘ dA
(0)
 

, A
(0)
 

! A
(0)
 

+ �↵ (2.13)

yields, by anomaly inflow, the well-known 4D anomaly,

�S
�

A

(0)
 

=
2T (R)

8⇡2

Z
trF 2 �↵ = 2T (R) �↵ , (2.14)

where represents the integer instanton number, leading to the well-known result that the

discrete subgroup
2T (R) ⇢ U

 

(1) (2.15)

remains unbroken by instantons.

With the 1-form gauging in place, i.e., with (B
(2)
c

, B
(1)
c

) fields present in Eq. (2.8), U
 

(1)

symmetry could be further broken to a smaller discrete subgroup, due to the replacement,

trF 2 ! tr
�
F̃ � B(2)

c

�2
. (2.16)

3
D

(R) is the value of the symmetric trace of the product of three generator
s normalized to the one evalu-

ated in the fundamental representation; T (R) is the Dynkin index of the representation R

, see Appendix A.
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Fermion kinetic term

This constraint satisfies the invariance under the U(1) 1-form gauge transformation,
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k

gauge fields are coupled to the standard gauge fields

a; the matter fields must also be coupled to the U(N) gauge fields, such that the 1-form

gauge invariance, (2.2), is satisfied. For a Weyl fermion  this is achieved by writing the

fermion kinetic term as
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 , (2.6)

with R(ã) appropriate for the representation to which  belongs, and n(R) is the N -ality

of the representation R. P
L

is the projection operator on the left-handed component of the

Dirac spinor. This whole procedure e↵ectively eliminates the ZC

k

redundancy and defines

a SU(N)/Z
k

theory.

Also, in order to study the anomaly of U
 

(1) symmetry (or of a discrete subgroup of

it),  ! ei↵ , we introduce an external U
 

(1) gauge field A
 

, and couple it to the fermion

as
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It is easy now to compute the anomalies following the standard Stora-Zumino descent

procedure [41, 42], see also [16]. For simplicity we write the expressions for a single fermion

and for an Abelian symmetry, but these can be readily generalized. A good recent review
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anomaly can be evaluated starting from a 6D (six-dimensional) Abelian anomaly [41, 42]3
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)3 +
2T (R)
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tr
�
F̃ � B(2)
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�2 ^ dA
 

+ . . . . (2.8)

Let us recall that, in the standard quantization (i.e., in the absence of the 1-form discrete

symmetry gauging),

B(1)
c , B(2)

c ! 0 , F̃ (ã) ! F (a) , (2.9)

and the above reduces to

D(R)

24⇡2
trF 3 +

2T (R)

8⇡2
trF 2 ^ dA

 

+ . . . . (2.10)

By using the identity [42, 41]

trF 3 = d {tr(a(da)2 + 3

5
(a)5 +

3

2
a3da)} (2.11)

(also trF 2 = d {tr(ada + 2
3a

3)}) the first term leads to the SU(N) gauge anomalies. The

second term gives the boundary term

2T (R)

8⇡2

Z

⌃5

trF 2 ^ A
 

(2.12)

which, after variations

A
 

⌘ dA
(0)
 

, A
(0)
 

! A
(0)
 

+ �↵ (2.13)

yields, by anomaly inflow, the well-known 4D anomaly,

�S
�A

(0)
 

=
2T (R)

8⇡2

Z
trF 2 �↵ = 2T (R) �↵ , (2.14)

where represents the integer instanton number, leading to the well-known result that the

discrete subgroup

2T (R) ⇢ U
 

(1) (2.15)

remains unbroken by instantons.

With the 1-form gauging in place, i.e., with (B(2)
c

, B
(1)
c

) fields present in Eq. (2.8), U
 

(1)

symmetry could be further broken to a smaller discrete subgroup, due to the replacement,

trF 2 ! tr
�
F̃ � B(2)

c

�2
. (2.16)

3
D(R) is the value of the symmetric trace of the product of three generators normalized to the one evalu-

ated in the fundamental representation; T (R) is the Dynkin index of the representation R, see Appendix A.
Throughout, the simplified di↵erential form notation is used, e.g., F 2 ⌘ F^F = 1

2F
µ⌫
F

⇢�
dxµdx⌫dx⇢dx� =

1
2✏µ⌫⇢�F

µ⌫
F

⇢�
d

4
x, etc.
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the first term is an integer 5; the second term is
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�
=

N

k2
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which is in general fractional.

3 Models with self-adjoint chiral fermions

We first consider a class of SU(N) gauge theories (N even) with left-handed fermions in

the N

2 fully antisymmetric representation. This representation is equivalent to its complex

conjugate (as can be seen by acting on it with the epsilon tensor) and so does not contribute

to the gauge anomaly. In these models there is a 1-form C

N
2

center symmetry and we are

particularly interested in understanding how this mixes in the ’t Hooft anomalies with the

other 0-form symmetries present.

3.1 SU(6) models

Let first examine in detail the case N = 6 with N
f

flavors of Weyl fermions in the repre-

sentation

20 = . (3.1)

As will be seen below, this (SU(6)) is the simplest nontrivial case of interest. The first

coe�cient of the beta function is

b0 =
11N � 6N

f

3
= 22� 2N

f

, (3.2)

so up to N
f

= 10 flavors are allowed for the theory to be asymptotically free. In all these

models, as will be explained in the following, there is a U(1)
 

global symmetry broken

by the usual ABJ anomaly and instantons to a global discrete  

6Nf
which is then further

broken by the 1-form gauging to  

2Nf
. Note that the latter breaking should be understood

4Observe that B(2)
c is Abelian, / N , and that trF̃ = N B

(2)
c .

5The combination
1

8⇡2

Z

⌃4

{trF̃ 2 � trF̃ ^ trF̃}

is the second Chern number of U(N) and is an integer. The second term of the above is also an integer as
(Nk )

2 is.
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Figure 2. The torus U(1) ⇥ U(1)⌘ (for N = 2 on the left and N = 4 on the right) and its unbroken
subgroup U(1) ⌘ ⇥ ( 2)F (red line for U(1) ⌘ ⇥ {1} and blue line for U(1) ⌘ ⇥ {�1} ) passing through all
the points of the lattice ( N+2) ⇥ ( N+4)⌘. The dots indicate the elements of the group ( N ), diamonds
indicate the elements of ( 2)F . (Z2)F is defined below, Eq. (3.19).

Let us consider the fermion parity defined by

 ! � , ⌘ ! �⌘ , (3.19)

which is equivalent to a 2⇡ space rotation. It is clear that (Z2)F is not violated by the ’t
Hooft vertex, so let us check if this is not a part of U(1) ⌘. If it were included, there would
be � such that

ei
N+4

2 � = e�iN+2
2 � = �1 . (3.20)

Multiplying these equations, we get ei� = 1, which is a contradiction.7

It can be checked that any discrete transformation keeping ’t Hooft vertex invariant
can be made of U(1) ⌘ ⇥ (Z2)F . For example, (ZN+2) generated by  ! e

2⇡i
N+2 can also

be given by
�

� = 2⇡
N+2 ,�1

�

2 U(1) ⌘ ⇥ (Z2)F . Similarly for (ZN+2)⌘.
For even N , we thus find that the symmetry group is

Gf =
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
. (3.21)

The division by ZN in Eq. (3.21) is because the center of the color SU(N) is shared by
elements in U(1) ⌘ ⇥ (Z2)F . Indeed, the gauge transformation with e

2⇡i
N 2 ZN ⇢ SU(N),

 ! e
4⇡i
N  , ⌘ ! e�

2⇡i
N ⌘ , (3.22)

can be written equally well as the following (Z2)F ⇥ U(1) ⌘ transformation:

 ! (�1) ei
N+4

2
2⇡
N  = e�iN2

2⇡
N ei

N+4
2

2⇡
N  , ⌘ ! (�1) e�iN+2

2
2⇡
N ⌘ = ei

N
2

2⇡
N e�iN+2

2
2⇡
N ⌘ .

(3.23)
Note that the odd elements of ZN belong to the disconnected component of U(1) ⌘⇥ (Z2)F
while the even elements belong to the identity component.

7Here we observe a crucial difference with the case of an odd N theory. There, the requirement ei(N+4)↵ =

e�i(N+2)↵ = �1 leads to e2i↵ = 1, i.e., ↵ = 0,⇡, showing that (Z2)F ⇢ U(1) ⌘.
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The division by ZN in Eq. (3.21) is because the center of the color SU(N) is shared by
elements in U(1) ⌘ ⇥ (Z2)F . Indeed, the gauge transformation with e

2⇡i
N 2 ZN ⇢ SU(N),

 ! e
4⇡i
N  , ⌘ ! e�

2⇡i
N ⌘ , (3.22)

can be written equally well as the following (Z2)F ⇥ U(1) ⌘ transformation:
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N e�iN+2

2
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N ⌘ .

(3.23)
Note that the odd elements of ZN belong to the disconnected component of U(1) ⌘⇥ (Z2)F
while the even elements belong to the identity component.

7Here we observe a crucial difference with the case of an odd N theory. There, the requirement ei(N+4)↵ =

e�i(N+2)↵ = �1 leads to e2i↵ = 1, i.e., ↵ = 0,⇡, showing that (Z2)F ⇢ U(1) ⌘.
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Figure 2. The torus U(1) ⇥ U(1)⌘ (for N = 2 on the left and N = 4 on the right) and its unbroken
subgroup U(1) ⌘ ⇥ ( 2)F (red line for U(1) ⌘ ⇥ {1} and blue line for U(1) ⌘ ⇥ {�1} ) passing through all
the points of the lattice ( N+2) ⇥ ( N+4)⌘. The dots indicate the elements of the group ( N ), diamonds
indicate the elements of ( 2)F . (Z2)F is defined below, Eq. (3.19).

Let us consider the fermion parity defined by

 ! � , ⌘ ! �⌘ , (3.19)

which is equivalent to a 2⇡ space rotation. It is clear that (Z2)F is not violated by the ’t
Hooft vertex, so let us check if this is not a part of U(1) ⌘. If it were included, there would
be � such that

ei
N+4

2 � = e�iN+2
2 � = �1 . (3.20)

Multiplying these equations, we get ei� = 1, which is a contradiction.7

It can be checked that any discrete transformation keeping ’t Hooft vertex invariant
can be made of U(1) ⌘ ⇥ (Z2)F . For example, (ZN+2) generated by  ! e
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be given by
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� = 2⇡
N+2 ,�1
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2 U(1) ⌘ ⇥ (Z2)F . Similarly for (ZN+2)⌘.
For even N , we thus find that the symmetry group is
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U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
. (3.21)

The division by ZN in Eq. (3.21) is because the center of the color SU(N) is shared by
elements in U(1) ⌘ ⇥ (Z2)F . Indeed, the gauge transformation with e
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(3.23)
Note that the odd elements of ZN belong to the disconnected component of U(1) ⌘⇥ (Z2)F
while the even elements belong to the identity component.

7Here we observe a crucial difference with the case of an odd N theory. There, the requirement ei(N+4)↵ =

e�i(N+2)↵ = �1 leads to e2i↵ = 1, i.e., ↵ = 0,⇡, showing that (Z2)F ⇢ U(1) ⌘.
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the points of the lattice ( N+2) ⇥ ( N+4)⌘. The dots indicate the elements of the group ( N ), diamonds
indicate the elements of ( 2)F . (Z2)F is defined below, Eq. (3.19).

Let us consider the fermion parity defined by

 ! � , ⌘ ! �⌘ , (3.19)

which is equivalent to a 2⇡ space rotation. It is clear that (Z2)F is not violated by the ’t
Hooft vertex, so let us check if this is not a part of U(1) ⌘. If it were included, there would
be � such that

ei
N+4

2 � = e�iN+2
2 � = �1 . (3.20)

Multiplying these equations, we get ei� = 1, which is a contradiction.7

It can be checked that any discrete transformation keeping ’t Hooft vertex invariant
can be made of U(1) ⌘ ⇥ (Z2)F . For example, (ZN+2) generated by  ! e

2⇡i
N+2 can also

be given by
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� = 2⇡
N+2 ,�1
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2 U(1) ⌘ ⇥ (Z2)F . Similarly for (ZN+2)⌘.
For even N , we thus find that the symmetry group is

Gf =
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
. (3.21)

The division by ZN in Eq. (3.21) is because the center of the color SU(N) is shared by
elements in U(1) ⌘ ⇥ (Z2)F . Indeed, the gauge transformation with e

2⇡i
N 2 ZN ⇢ SU(N),

 ! e
4⇡i
N  , ⌘ ! e�

2⇡i
N ⌘ , (3.22)

can be written equally well as the following (Z2)F ⇥ U(1) ⌘ transformation:
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Note that the odd elements of ZN belong to the disconnected component of U(1) ⌘⇥ (Z2)F
while the even elements belong to the identity component.

7Here we observe a crucial difference with the case of an odd N theory. There, the requirement ei(N+4)↵ =

e�i(N+2)↵ = �1 leads to e2i↵ = 1, i.e., ↵ = 0,⇡, showing that (Z2)F ⇢ U(1) ⌘.
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Calculation of anomalies by Stora-Zumino descent procedure 

6D anomaly functionals

Before proceeding to the calculation, let us make a brief pause. We have already noted
that in contrast to the odd N systems considered in Sec. 4, the fermion kinetic terms in
an even N theory (5.14) are invariant under the center gauge transformations, Eq. (5.4),
Eq. (5.5), Eq. (5.10), without explicit addition of terms involving B(2)

c and B(2)
f (cfr. see

Eq. (4.12) for the odd N case). Thus the rewriting made above (5.15)-(5.17) might look
redundant at first sight: these expressions appear to be actually independent of B(2)

c and
B(2)

f . This, however, is not quite correct. If one were to proceed with calculation without
making each term 1-form gauge invariant, as done above, the resulting anomaly expressions
would not be invariant under the 1-form (ZN and ZN+4) center gauge transformations, so
that there would be no guarantee that the mixed anomalies have been correctly evaluated
in the reduced PSU(N) or PSU(N + 4) theories. We thus prefer to work with explicitly
1-form gauge invariant forms at each step of the calculation below.12

Let us proceed to the 6D anomaly functionals due to these fermions:  gives, from
Eq. (5.15),13
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. (5.18)

12In the standard anomaly calculation in 4D à la Fujikawa (Sec. 7), the introduction of these center gauge
fields are seen more straightforwardly as a modification of the theory.

13Actually, B(2)
f (but not B(2)

c !) drops out completely from the expression below (5.18), as can be seen
from the first line. This is correct, as  is a singlet of SU(N + 4) and consequently Eq. (5.15) does not
contain the SU(N + 4) gauge fields. This can be used as a check of the calculations below.
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Calculation of anomalies: Stora-Zumino descent procedure 

The contribution of ⌘ is (from Eq. (5.16)):
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The sum of the UV anomalies is

+
N

24⇡2
tr
h

�
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Calculation of anomalies: Stora-Zumino descent procedure 

In the IR, the "baryons" Eq. (2.7) yield, from Eq. (5.17), the 6D anomaly14
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Note that the second-from-the-last term, corresponding to [ 2]2�U(1) ⌘ anomaly, is iden-
tical in the UV and in the IR, see Eq. (5.20) and Eq. (5.21).

5.2 An almost flat ( 2)F connection, generalized cocycle condition, and the ’t
Hooft fluxes

Before proceeding to the actual determination of various mixed anomalies, let us recapitu-
late some formal points involved in our analysis. The first is the meaning of the gauge field
for ( 2)F introduced above. The combination

2A(1)
2 �B(1)

c �B(1)
f = dA(0)

2 , (5.22)

is the modification of the ( 2)F gauge field, 2A(1)
2 = dA(0)

2 , such that it is invariant under
the 1-form gauge transformations, (5.4)-(5.10). By taking the derivatives of the both sides
of Eq. (5.22) it might appear that one gets

2 dA(1)
2 �NB(2)

c � (N + 4)B(2)
f = 0 : (5.23)

this would erase all terms containing 2 dA(1)
2 � NB(2)

c � (N + 4)B(2)
f from the 6D action,

(5.18)-(5.21). This, of course, is not correct as A(0)
2 is a 2⇡ periodic (angular) field. Indeed,

the left hand side of Eq. (5.22) is "an almost flat connection": Eq. (5.23) is correct locally,
14Note that B(2)

c actually drops out completely from this expression, as is clear from the first line. This
is as it should be, as the baryons are color SU(N) singlets: they are coupled neither to SU(N) gauge fields
nor to N gauge fields B(2)

c . This can again be used as a check in the following calculations.
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Determination of the mixed anomalies involving

Note that, crucially, their coefficients (2 and N) are both even integers. This confirms that
the field A(1)

2 and its variation �A(0)
2 are correctly normalized.

Similarly in the IR one has

�S4
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Again, the first term is trivial, as N + 2 is an even integer.
The second terms in Eq. (5.33) and in Eq. (5.36) describe the nontrivial ( 2)F �

[U(1) ⌘]2 anomaly, present both in the UV and in the IR.18 However, their difference is
given by
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Since the coefficient N(N+4)
2 is any even integer the discrete ( 2)F � [U(1) ⌘]2 anomaly is

matched modulo 2 in the IR and UV.
All in all, we reproduce the earlier results reported in Sec. 2, that a chirally symmetric

vacuum, with no condensates, with no NG bosons but with massless baryons Eq. (2.7),
satisfy all the conventional ’t Hooft anomaly matching constraints.

6 UV-IR matching of various mixed anomalies in even N theories

Now we come to the main issues of our analysis: studying the various mixed anomalies
involving the fermion parity ( 2)F , in the presence of the 2-form gauge fields B(2)

c and
B(2)

f , in an even N theory. Starting from the 6D action, Eq. (5.18) - Eq. (5.21), one collects
the terms of the form,
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Integrating, one gets the 5D boundary WZW action
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This allows us to calculate various anomalies in 4D involving ( 2)F , by anomaly inflow,
considering the variations
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18This is so for even N of the form, N = 4m+ 2, m 2 .
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�S4
IR = �N + 2

8⇡2

Z

tr[F (Af)]
2 �A

(0)
2

2

� 1

8⇡2

✓

N

2

◆2 (N + 4)(N + 3)

2

Z

[dA]2
�A(0)

2

2
. (5.36)

Again, the first term is trivial, as N + 2 is an even integer.
The second terms in Eq. (5.33) and in Eq. (5.36) describe the nontrivial ( 2)F �

[U(1) ⌘]2 anomaly, present both in the UV and in the IR.18 However, their difference is
given by

� N(N + 4)

2

Z

✓

1

8⇡2
[dA]2

◆

· �A(0)
2

2
. (5.37)

Since the coefficient N(N+4)
2 is any even integer the discrete ( 2)F � [U(1) ⌘]2 anomaly is

matched modulo 2 in the IR and UV.
All in all, we reproduce the earlier results reported in Sec. 2, that a chirally symmetric

vacuum, with no condensates, with no NG bosons but with massless baryons Eq. (2.7),
satisfy all the conventional ’t Hooft anomaly matching constraints.

6 UV-IR matching of various mixed anomalies in even N theories

Now we come to the main issues of our analysis: studying the various mixed anomalies
involving the fermion parity ( 2)F , in the presence of the 2-form gauge fields B(2)

c and
B(2)

f , in an even N theory. Starting from the 6D action, Eq. (5.18) - Eq. (5.21), one collects
the terms of the form,

S6D =

Z

6
[...]



dA(1)
2 � N

2
B(2)

c � N + 4

2
B(2)

f

�

. (6.1)

Integrating, one gets the 5D boundary WZW action

S5D =

Z

5
[...]



A(1)
2 � 1

2
B(1)

c � 1

2
B(1)

f

�

. (6.2)

This allows us to calculate various anomalies in 4D involving ( 2)F , by anomaly inflow,
considering the variations

�[A(1)
2 � 1

2
B(1)

c � 1

2
B(1)

f ] =
1

2
d �A(0)

2 , (6.3)

�S4D =
1

2

Z

4
[...] �A(0)

2 , �A(0)
2 = ±2⇡ . (6.4)

18This is so for even N of the form, N = 4m+ 2, m 2 .
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one gets various 4D anomalies ( “anomaly inflow” )

Integrate  to give 5D boundary WZW action: 

Consider variations

♦

♦

Results☞


