

Exploring light dark matter @ atomic clocks and co-magnetometers

Diego Blas

w./ R. Alonso (IPPP, Durham) and P. Wolf (Paris Observatory) 1810.00889 (JHEP) & 1810.01632 (PRD)

On boundaries of the DM landscape

- Candidate should be a cold gravitating medium
- Production mechanism and viable cosmology
- Motivation from fundamental physics
- Possibility of (direct or indirect) detection

On boundaries of the DM landscape

- Candidate should be a cold gravitating medium
- Production mechanism and viable cosmology
- Motivation from fundamental physics
- Possibility of (direct or indirect) detection

'Knowns' about DM in the Milky Way

expectation in the Solar system $\begin{cases} \rho_{\odot} \sim 0.3 \,\text{GeV/cm}^{3} \\ m_{\chi} \langle v_{\odot} \rangle \sim 10^{-3} m_{\chi} \end{cases}$ flux: $10^{10} \left(\frac{\text{MeV}}{m_{\chi}} \right) \,\text{cm}^{-2} \text{s}^{-1}$

'Traditional' Direct Detection

(still 'high' mass in the DM landscape)

'Traditional' Direct Detection

Very active field! See e.g. Alexander et al 1608.08632

Atomic clock achievements

Poli et al. 1401.2378 Safronova et al. 1710.01833 Riehle et al. (CIPM) 2018

Measuring at q = 0: phase shifts in atomic clocks

Measuring at q = 0: phase shifts in atomic clocks

after 'adjusting the device': $P_2 = \cos[\Delta \omega T/2]^2$ w/ $\Delta \omega \equiv \omega - (E_2 - E_1)$ $\partial P_2 = 0 \quad \blacktriangleright \quad \omega_{\max} = \Delta E$ measurement of the phase difference e^{iHT}

Measuring at q = 0: phase shifts in atomic clocks

after 'adjusting the device': $P_2 = \cos[\Delta \omega T/2]^2$ w/ $\Delta \omega \equiv \omega - (E_2 - E_1)$ $\partial P_2 = 0$ \longrightarrow $\omega_{\max} = \Delta E$ measurement of the phase difference e^{iHT} will be sensitive to anything of the form $H_i = E_i^{\text{free}} + V_i$ provided $\delta V_i \neq 0$ (analogy with MSW if useful)

DM-atom interaction during Ramsey sequence

DM-atom interaction during Ramsey sequence

DM-atom interaction during Ramsey sequence Ramsey sequence $|1\rangle \equiv |\operatorname{At}_{\lambda}^{F}\rangle \quad |2\rangle \equiv |\operatorname{At}_{\lambda}^{F+1}\rangle$ $\left|1\right\rangle \equiv \left|\operatorname{At}_{\lambda}^{F'}\right\rangle$ Dark Matter ω ω P_2 $e^{i\mathbf{p}_{\chi}\cdot\mathbf{x}}$ P_1 t_1 T $e^{i\mathbf{p}_{\chi}\cdot\mathbf{x}} + \frac{f_{i}(p_{\chi}\mathbf{\hat{x}}, \mathbf{p}_{\chi})e^{ip_{\chi}|\mathbf{x}|}}{|\mathbf{x}| \cdot \cdot \mathbf{y}_{\chi}}$ $m_{\rm DM} \ll m_{\rm atom}$ For **FLUX** of DM Wolf, Alonso, DB. 1810.01632 $P_2 = \cos[\Delta\omega T/2]^2 + \frac{\pi n_{\chi} v T}{n_{\chi}} \operatorname{Re}[\bar{f}_1(0) - \bar{f}_2(0)] \sin[\Delta\omega T]$

 $\partial P_2 = 0 \quad \clubsuit \quad \omega_{\max} = \Delta E + \delta_{\rm DM}$

The measured phase can be used to detect the interaction if $f_F(0) - f_{F+1}(0) \neq 0$

DM-atom scattering: effective vertex

Main results

for scattering with axial vectors $A_{\mu}\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$

(cancels at first order for pseudo-scalars)

Which DM-atom interactions?

 $\bar{f}(0)_1 - \bar{f}(0)_2$

We probe spin-dependent interactions

 $\vec{S}_e \cdot \vec{v}_\chi$, $~\vec{S}_e \cdot \vec{S}_\chi$,

average effect

the relative velocity contains a **coherent** part the DM spin is in principle **arbitrary** $O(1/\sqrt{N})$ suppression (independent scatterings) but detectable as 'noise' $N_{\rm at} \sim 10^6$ $l \sim {\rm cm}, t \sim {\rm s}$

final remark

one needs to make sure that the effect is not confused with atomic physics/backgrounds (e.g. use daily modulation, system comparison...)

Q:Are atomic clocks the best way to measure differences in absolute energies of levels of different spin?

 $\Delta\omega \lesssim 10^{-15}\omega \sim 10^{-15}\times 10\,\mathrm{GHz} \sim 10^{-5}\,\mathrm{Hz}$

New effects of the ultra-light domain

- Candidate should be a cold gravitating medium
- Production mechanism and viable cosmology
- Motivation from fundamental physics
- Possibility of (direct or indirect) detection

'Coherent' effects of ULDM in the MW

Virialized collection of waves

The ultra-light domain: interaction with atoms

for generic couplings this means the oscillation of 'fundamental constants'

e.g.
$$(m+g_{\phi ee}ar{\phi}(t))ar{e}e$$

different effect in different atoms: can be searched for in clocks!

Arvanitaki et al 1405.29205

+ Stadnik and Flambaum 16 + Hess et al 16 + Derevianko and Pospelov 13

Estimates: three examples

*m*_a [eV]

Estimates: three examples

Alonso, DB, Wolf 1810.00889

complex scalar DM

$$L_{\rm int} = -G_n \int d^3x \left(\bar{n}\gamma^{\mu}\gamma_5 n \right) \left(i\chi^{\dagger}\partial_{\mu}\chi + \text{h.c.} \right)$$

 $\vec{S}_n \cdot \vec{v}_\chi$

Estimates: three examples

fermionic DM with light mediator

Alonso, DB, Wolf 1810.00889

Summary and Conclusions

Precise (quantum) devices perfect for small momentum transfer (typical of low mass DM)

Standard operation of atomic clocks/magnetometers yields new bounds on some DM-SM couplings

New possibilities to explore!

Future

More complete cosmology framework for some models

- Other operators (e.g. momentum dependent couplings) when $[\bar{f}(0)_1 \bar{f}(0)_2 \neq 0]$ (optical/nuclear clocks?)
- Neutrinos? (CnB seems out of reach)
 Alonso, DB, Wolf 1810.00889
- Devices close to beams for large fluxes of small m particles?
- Other precise devices...atom interferometry?