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Introduction



Dark Matter

Battaglieri et al. (2017)
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Axions

• Originally proposed to solve strong CP problem (QCD axion)

• Potential from explicit nonperturbative breaking of symmetry

At weak coupling, generically V (φ) = m2f 2
[
1− cos

(
φ
f

)]
QCD axion: m2f 2 = Λ2

QCD

• More generally, there can be many axion-like particles. Quite

generic in string-inspired models: “String axiverse”

• Question: Can they be DM? What effects would they have?
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Axion cosmology

• For m . 1 eV, occupation number is larger than 1

Treat field like classical wave, not particle

• Natural DM production: misalignment mechanism

Symmetry breaking before inflation

Very cold, homogeneous field with initial value Φ0

• Zero mode evolves as Φ̈ + 3HΦ̇ + dV
dφ

(Φ) = 0
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Axion cosmology: Free field case

V (φ) = 1
2
m2φ2 Φ̈ + 3HΦ̇ + m2Φ = 0

• H � m: Field frozen, Φ is constant

• H . m: Field oscillates, behaves like dark matter, ρ ∝ a−3

• What about spatial structure?

– k � m: Behaves like CDM

– k � m: Structure washed out by kinetic pressure
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Axion cosmology: Self-interactions

- π
�

π
�

θ

�

�

�(θ)

Hosc : Hubble at the time the field begins oscillating

For “flatter” potentials, Hosc will be delayed from naive H ∼ m

fπ/2: yields proper DM abundance given Θ0 = π
2
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Axion cosmology: Self-interactions

• Self-interactions are generic (and generically attractive)

• Most important at earliest times (when H ∼ Hosc . m)

• Lead to clumping of structure
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Structure growth and collapse



Linear regime

For concreteness: V (φ) = m2f 2
[
1− cos

(
φ
f

)]
φ
f

= Θ(t) +
∑

k θk(t)e ik·x

• Step 1: Solve for background behavior of zero-mode Θ

• Step 2: Expand in small perturbation θk

θ′′k + 3
2tm
θ′k +

[
cos(Θ) + k̃2

tm

]
θk ≈ 0

tm = m
2H
' mt k̃2 = k2/a2

2mH
= const. in R.D.

9



Linear regime

For concreteness: V (φ) = m2f 2
[
1− cos

(
φ
f

)]
φ
f

= Θ(t) +
∑

k θk(t)e ik·x

• Step 1: Solve for background behavior of zero-mode Θ

• Step 2: Expand in small perturbation θk

θ′′k + 3
2tm
θ′k +

[
cos(Θ) + k̃2

tm

]
θk ≈ 0

tm = m
2H
' mt k̃2 = k2/a2

2mH
= const. in R.D.

9



Linear regime: Representative point
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Linear regime: What scales?

Effects strongest for k̃ ∼ 1, or modes that enter the horizon at

the same time the field starts oscillating (when m ' H)

M∗s ≈ 5× 109M�
[
10−22eV

m

]3/2
B ≡ ρs

ρCDM
s
∼ exp

(
ξ m
Hosc

)
ξ ∼ O(1)

r ∗s ∼ 100 pc
(

M∗
s

5×109M�

)1/3 (
105

B

)1/3
∝
(

1
m

)1/2
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Nonlinear regime

• B . 106: Structures collapse gravitationally before CDM

prediction

– Occurs in matter domination

– Form compact halo, can cool towards soliton

– For significant boost, O(1) of DM ends up in halos

• B & 106: Structures collapse purely due to self-interactions

– Occurs in radiation domination

– Form oscillon, bound state of unknown lifetime
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Signatures



Gravitational interactions
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Direct detection
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Direct detection

• Dark matter clumped into halos of characteristic size r ∗s
– Outside clumps: ↓ density relative to CDM

– Inside clumps: ↑ density, ↓ velocity dispersion relative to CDM

• Changes search strategies

– Record data off of resonant frequency (i.e. run in broadband

mode) for resonant experiments

– Look for spikes in signal power for duration of crossing time

– Coherence length is much longer than it would be without

clumps =⇒ reconstruct spatial structure

• Can improve search sensitivity, but must design properly
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Direct detection

gaγγ ∼ α
4πf
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Other signatures

Star formation

• Halos collapse earlier than in CDM =⇒ denser

• Star formation can occur earlier

• Affected range: Halos from 104M� to 109M�

Gravitational waves

• Collapse due to self-interactions in radiation domination

leaves GW background

• Potential to see with pulsar timing arrays, quasar astrometry
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Summary of signatures
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Summary

• Axion self-interactions can have significant effects on

structure formation in the early universe

• For QCD axion, affected range is fa . 1010 GeV

• Affects direct detection strategies and bounds

• Probes: gravitational interactions, star formation, GW

background

• Open questions and future work:

– Better nonlinear simulations

– Careful reanalysis of direct detection bounds

– Better studies of star formation and reionization
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Summary
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