The Large Misalignment Mechanism: Resonant structure growth in axion DM

Jed Thompson (Stanford University)

Phys. Rev. D 101, 083014

with A. Arvanitaki, S. Dimopoulos, M. Galanis, L. Lehner, and K. Van Tilburg

April 23, 2020

Introduction

Structure growth and collapse

Signatures

Introduction

Dark Matter

Battaglieri et al. (2017)

- Originally proposed to solve strong CP problem (QCD axion)
- Potential from explicit nonperturbative breaking of symmetry At weak coupling, generically $V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]$ QCD axion: $m^2 f^2 = \Lambda^2_{QCD}$
- More generally, there can be many axion-like particles. Quite generic in string-inspired models: "String axiverse"
- Question: Can they be DM? What effects would they have?

- For $m \lesssim 1 \; {\rm eV}$, occupation number is larger than 1 Treat field like classical wave, not particle
- Natural DM production: misalignment mechanism Symmetry breaking before inflation Very cold, homogeneous field with initial value Φ_0
- Zero mode evolves as $\ddot{\Phi} + 3H\dot{\Phi} + \frac{\mathrm{d}V}{\mathrm{d}\phi}(\Phi) = 0$

$$V(\phi) = \frac{1}{2}m^2\phi^2 \qquad \qquad \ddot{\Phi} + 3H\dot{\Phi} + m^2\Phi = 0$$

- $H \gg m$: Field frozen, Φ is constant
- $H \lesssim m$: Field oscillates, behaves like **dark matter**, $ho \propto a^{-3}$

$$V(\phi) = \frac{1}{2}m^2\phi^2 \qquad \qquad \ddot{\Phi} + 3H\dot{\Phi} + m^2\Phi = 0$$

- $H \gg m$: Field frozen, Φ is constant
- $H \lesssim m$: Field oscillates, behaves like **dark matter**, $ho \propto a^{-3}$
- What about spatial structure?
 - $k \ll m$: Behaves like CDM
 - $k \gg m$: Structure washed out by kinetic pressure

Axion cosmology: Self-interactions

 H_{osc} : Hubble at the time the field begins oscillating For "flatter" potentials, H_{osc} will be delayed from naive $H \sim m$ $f_{\pi/2}$: yields proper DM abundance given $\Theta_0 = \frac{\pi}{2}$

- Self-interactions are generic (and generically attractive)
- Most important at earliest times (when $H \sim H_{osc} \lesssim m$)
- Lead to clumping of structure

Structure growth and collapse

For concreteness: $V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]$

$$rac{\phi}{f} = \Theta(t) + \sum_k heta_k(t) e^{ik\cdot x}$$

- Step 1: Solve for background behavior of zero-mode Θ
- Step 2: Expand in small perturbation θ_k

For concreteness: $V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]$

$$rac{\phi}{f} = \Theta(t) + \sum_k heta_k(t) e^{ik\cdot x}$$

- Step 1: Solve for background behavior of zero-mode Θ
- Step 2: Expand in small perturbation θ_k

$$heta_k'' + rac{3}{2t_m} heta_k' + \left[\cos(\Theta) + rac{ ilde{k}^2}{t_m}
ight] heta_k pprox 0$$

$$t_m = \frac{m}{2H} \simeq mt$$
 $\tilde{k}^2 = \frac{k^2/a^2}{2mH} = \text{const. in R.D.}$

Linear regime: Representative point

Effects strongest for $\tilde{k} \sim 1$, or modes that enter the horizon at the same time the field starts oscillating (when $m \simeq H$)

$$\begin{split} M_s^* &\approx 5 \times 10^9 M_{\odot} \left[\frac{10^{-22} \text{eV}}{m}\right]^{3/2} \\ \mathcal{B} &\equiv \frac{\rho_s}{\rho_s^{\text{CDM}}} \sim \exp\left(\xi \frac{m}{H_{\text{osc}}}\right) \qquad \xi \sim \mathcal{O}(1) \\ r_s^* &\sim 100 \text{ pc} \left(\frac{M_s^*}{5 \times 10^9 M_{\odot}}\right)^{1/3} \left(\frac{10^5}{\mathcal{B}}\right)^{1/3} \propto \left(\frac{1}{m}\right)^{1/2} \end{split}$$

- + $\mathcal{B} \lesssim 10^6 \colon$ Structures collapse gravitationally before CDM prediction
 - Occurs in matter domination
 - Form compact halo, can cool towards soliton
 - For significant boost, $\mathcal{O}(1)$ of DM ends up in halos
- + $\mathcal{B}\gtrsim 10^6$: Structures collapse purely due to self-interactions
 - Occurs in radiation domination
 - Form oscillon, bound state of unknown lifetime

Signatures

Gravitational interactions

Direct detection

- Dark matter clumped into halos of characteristic size r_s^*
 - Outside clumps: \downarrow density relative to CDM
 - Inside clumps: \uparrow density, \downarrow velocity dispersion relative to CDM

- Dark matter clumped into halos of characteristic size r_s^*
 - Outside clumps: \downarrow density relative to CDM
 - Inside clumps: \uparrow density, \downarrow velocity dispersion relative to CDM
- Changes search strategies
 - Record data off of resonant frequency (i.e. run in broadband mode) for resonant experiments
 - Look for spikes in signal power for duration of crossing time
 - Coherence length is much longer than it would be without clumps \implies reconstruct spatial structure
- Can improve search sensitivity, but must design properly

Direct detection

Other signatures

Star formation

- Halos collapse earlier than in CDM \implies denser
- Star formation can occur earlier
- Affected range: Halos from $10^4 M_{\odot}$ to $10^9 M_{\odot}$

Gravitational waves

- Collapse due to self-interactions in radiation domination leaves GW background
- Potential to see with pulsar timing arrays, quasar astrometry

Summary of signatures

- Axion self-interactions can have significant effects on structure formation in the early universe
- For QCD axion, affected range is $f_a \lesssim 10^{10}~{
 m GeV}$
- Affects direct detection strategies and bounds
- Probes: gravitational interactions, star formation, GW background
- Open questions and future work:
 - Better nonlinear simulations
 - Careful reanalysis of direct detection bounds
 - Better studies of star formation and reionization

